首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the transmission mechanism of neuralising signals during primary embryonic induction, the interacting components (competent newt gastrula ectoderm and dorsal lip tissues) were separated by filter membranes of varying pore size. Nuclepore filters with nominal pore size from 0.1 to 8 μm were employed and the neuralising effect was shown to traverse all of these membranes. Electron microscopic examination did not reveal any cytoplasmic processes in the pores and the authors conclude that the morphogenetic signals are carried by transmissable compounds rather than through direct cytoplasmic contacts.  相似文献   

2.
The transmission mechanisms operative at different stages of neutralisation during primary embryonic induction of the newt Triturus vulgaris were studied in experiments employing Nuclepore filters placed between interactive tissue explants. The transmission time of the neuralising effect was determined with 0.2 μm Nuclepore filter. In another series of experiments the transformation of neuralised ectoderm by archenteron roof mesoderm into other parts of the CNS was studied. Although sufficiently long induction times were used no transformation into hindbrain structures could be induced across filters with pore sizes from 0.1 μm to 1.0 μm. However, electron microscopy demonstrated cytoplasmic penetration into 0.6 μm filters at 15 h of induction. The results speak against free long-range diffusion of inductive material at the stage of transformation of the neuralised ectoderm to more caudal parts of CSN and warrant a more detailed structural study of the transmission phenomenon in question.  相似文献   

3.
核钙信号   总被引:2,自引:0,他引:2  
刘冀珑  卢青  陈大元 《生命科学》2001,13(1):41-44,17
尽管核周隙与内质网的腔相通,核膜上存在钙信号分子的受体等事实表明,细胞核存在一套相对独立的钙信号机制。作为核钙的贮存库,核被是核钙信号的发源地。核被中钙离子的充盈状态影响着核孔复合体的构象,从而调节核质间物质交流。已有证据显示,核钙信号与胞质钙信号在基因转录中的作用有所区别。核钙信号在细胞凋亡中发挥重要作用,其中,钙蛋白酶起着较为关键的作用。核钙信号研究为完整理解钙信号的生理功能开辟了新视野。  相似文献   

4.
Monteiro MJ  Hall G  Gee S  Xie L 《Biomacromolecules》2004,5(5):1637-1641
A way to control the average pore size in cross-linked polyacrylamide-based membranes is by altering the ratio of cross-linker to acylamide monomer. Larger pore sizes are prepared with a minimum amount of cross-linker, resulting in membranes that are mechanically weak and have short lifetimes. The aim of this study was to prepare cross-linked polyacrylamide membranes with large pore sizes and with good mechanical integrity. The methodology was to carry out the polymerization in a template, formed from the self-aggregation of surfactant. Two surfactant templates were used, and their pore size was examined with proteins of different sizes. The surfactants chosen for this study were sodium dodecyl sulfate (SDS, ionic surfactant) and TERIC BL8 (nonionic surfactant), both of which have very different aggregation properties. The data showed that at 10% and greater of TERIC BL8, a very different and open gel structure is formed, in which the pore size was significantly increased. SDS seemed to have little effect on the pore size. The data suggests that the gel structures for both surfactants up to 4% (w/v) are similar and micellular, because SDS is known to favor a micelle structure. Above 4% (w/v), TERIC BL8 then goes through a change in its lyotropic phase, thus, producing membranes of a large pore size. In conclusion, the pore size and gel structure of polyacrylamide hydrogel membranes can be significantly increased using TERIC BL8 (nonionic) surfactant. This allows large-pore-size membranes with a high cross-link density and consequently high mechanical strength to be prepared for the separation of large biomolecules.  相似文献   

5.
《The Journal of cell biology》1995,129(6):1459-1472
Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein-containing fraction. GTP gamma S prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose-depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the pore protein- containing membranes still sedimented in a distinct peak but were less dense than control annulate lamellae.  相似文献   

6.
The objective of this study was to examine membrane filtration of a single stranded DNA (ssDNA) with 60 thymine nucleotides, and to elucidate the variables controlling its transmission across track-etched porous membranes. Dead end filtration measurements were performed using different pore size membranes (10, 15, and 30 nm) at different transmembrane pressures in solutions with ionic strength ranging from 0 to 1000 mM NaCl. The diffusivity of the ssDNA was determined using fluorescence recovery after photobleaching, yielding hydrodynamic radii ranging from 1.6 to 2.8 nm, with values decreasing with increasing solution ionic strength. Despite the small ssDNA/membrane pore size, nearly 100% rejection was observed for measurements performed with the 10 and 15 nm pore size membranes under low-ionic strength conditions. These high rejections can be attributed to strong repulsive electrostatic ssDNA-membrane interactions. With increasing ionic strength, electrostatic interactions as well as the effective size of the ssDNA decreases and the flexibility of the ssDNA increases, leading to a reduction in ssDNA rejection. A design of experiments approach was used to plan filtration experiments that adequately covered the variable space with a manageable number of experiments. The results yielded an empirical expression relating ssDNA rejection to pore size, solution ionic strength and transmembrane pressure. There was evidence of flow induced elongation at high-transmembrane pressures in the 30 nm pore size membranes, but not in the smaller pore size membranes. These results are consistent with critical flux estimates developed using a free draining model for the ssDNA.  相似文献   

7.
Poly(acrylonitrile)chitosan composite membranes for urease immobilization   总被引:1,自引:0,他引:1  
(Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.  相似文献   

8.
Clearance of murine leukemia virus from CHO cell suspensions by flocculation and microfiltration was investigated. Murine leukemia virus is a retrovirus that is recommended by the U.S. Food and Drug Administration for validating clearance of retrovirus-like particles. Due to biosafety considerations, an amphotropic murine leukemia virus vector (A-MLV) that is incapable of self-replication was used. Further, A-MLV is incapable of infecting CHO cells, thus ensuring that infection of the CHO cells in the feed did not result in a reduced virus titer in the permeate. The virus vector contains the gene for the enhanced green fluorescent protein (EGFP) to facilitate assaying for infectious virus particles. The virus particles are 80-130 nm in size. The feed streams were flocculated using a cationic polyelectrolyte. Microfiltration was conducted using 0.1 and 0.65 microm pore size hollow fiber membranes. The level of virus clearance in the permeate was determined. For the 0.1 microm pore size membranes a 1,000-fold reduction in the virus titer in the permeate was observed for feed streams consisting of A-MLV, A-MLV plus flocculant, A-MLV plus CHO cells, and A-MLV plus flocculant and CHO cells. While the flocculant had little effect on the level of virus clearance in the permeate for 0.1 microm pore size membranes, it did lead to higher permeate fluxes for the CHO cell feed streams. Virus clearance experiments conducted with 0.65 microm pore size membranes indicate little clearance of A-MLV from the permeate in the absence of flocculant. However, in the presence of flocculant the level of virus clearance in the permeate was similar to that observed for 0.1 microm pore size membranes. The results obtained here indicate that significant clearance of A-MLV is possible during tangential flow microfiltration. Addition of a flocculant is essential if the membrane pore size is greater than the diameter of the virus particles. Flocculation of the feed stream leads to an increase in the permeate flux.  相似文献   

9.
Relatively large amounts of linear or circular DNAs were injected into the animal or vegetal cytoplasm of fertilized eggs of Xenopus laevis and the nature of large nucleus-like structures formed by the injected DNAs was studied cytologically and electron microscopically. Results of fluorescent microscopic examination combined with immunohistochemical analysis strongly suggested that the injected DNAs were assembled into the nucleus-like structures probably after being complexed with maternal histones. The assemblage of nucleus-like structures preferentially took place in the animal most region of the egg, and the size of the nucleus-like structures formed depended on the amount of the injected DNA. The nucleus-like structures were surrounded by double membranes equipped with nuclear pore complexes, but there were at least two abnormal features in their ultrastructures. First, nucleus-like structures contained cytoplasmic particulate materials, most probably ribosomes and/or glycogen granules. Secondly, many of the nuclear pore complexes on the "nuclear envelope" appeared to be incomplete, with blebs formed from inner leaflet and protruded into the perinuclear space. Injected circular plasmid DNAs were also assembled into large nucleus-like structures in the animal most region, and appeared to be partitioned into descendant cells during the cleavage.  相似文献   

10.
Within minutes of Bdellovibrio bacteriovorus attack on prey cells, such as Escherichia coli, the cytoplasmic membrane of the prey is altered. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified invaded prey cell (bdelloplast) membranes revealed the appearance of a noncytoplasmic membrane protein. This protein is not observed in preparations of noninvaded E. coli membranes and migrates in a manner similar to that of E. coli OmpF. Isoelectric focusing and two-dimensional gel electrophoresis of bdelloplast cytoplasmic membrane preparations also revealed the presence of a protein with electrophoretic properties similar to those of OmpF and the major Bdellovibrio outer membrane proteins. The protein appears in cytoplasmic membrane preparations within minutes of attack and persists throughout most of the intraperiplasmic developmental cycle. The appearance of this protein is consistent with our hypothesis that bdellovibrios translocate a pore protein into the bdelloplast cytoplasmic membrane to kill their prey and to gain access to the cytoplasmic contents for growth.  相似文献   

11.
Trapping single ions inside single ion channels.   总被引:6,自引:2,他引:6       下载免费PDF全文
Single Ca++-activated K+ channels from rat muscle plasma membranes are inhibited by Ba++. A single Ba++ entering the channel's conduction pore induces a long-lived blocked state. This study employs Ba++ as a probe of the channel's conduction pathway to show that the channel can be forced to close with a single Ba++ ion inside the pore. A Ba++ ion inside the closed channel is trapped and cannot escape until the channel opens. The results demonstrate that in the channel's closed state, the cytoplasmic side of the conduction pore is obstructed to the passage of ions.  相似文献   

12.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (k(D) 2.68 x 10(-7) M vs. 1.03 x 10(-6) M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

13.
Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

14.
T A Keil 《Tissue & cell》1984,16(5):705-717
Negatively charged surface coats have been demonstrated on the pore tubules and dendritic membranes of olfactory hairs of male Antheraea polyphemus silkmoths by application of the cationic markers lanthanum (La3+), ruthenium red (RR), and cationized ferritin (CF). Lanthanum and RR diffused readily into the apically opened hairs, whereas CF penetrated only for a relatively short distance. Deposits of the markers are distributed as follows: the inner surfaces of the hair walls are stained by RR and to a small degree by CF; the surfaces of the pore tubules and the dendritic membranes are stained by all three markers. The pore tubules have the strongest affinity for CF. The number of pore tubule-membrane contacts seems to be increased by the cationic dyes. The dendrites are often penetrated by RR, which forms deposits on the inner membrane leaflets, the cytoplasmic microtubules, and microfilaments, and by La3+, but never by CF. The observations provide support for the assumption that, first, the pore tubule-membrane contacts are formed via surface coats of both structures, possibly influenced by cations and, second, that the dendrites remain intact after pinching off the hair tips.  相似文献   

15.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

16.
A survey of interactions of membrane filters with viruses has included 28 types of membranes, 4 types of enteroviruses, and 1 reovirus. Losses of these viruses in filtration, due to adsorption to the filter membranes, appear to be governed by three factors: the chemical composition of the filter membrane, the ratio of pore diameter to the diameter of the virus particle, and the presence of substances, such as those occurring in serum, which interfere with adsorption. Membranes of cellulose triacetate and of certain other materials have a very low affinity for these viruses. Cellulose triacetate filters adsorb virtually none when the pore size exceeds the virus diameter by a factor of more than 3. At porosities nearer the virus diameter, even low-affinity membranes adsorb large quantities of virus unless serum or some other additive interferes. Cellulose nitrate membranes, in the absence of interfering substances, adsorb enterovirus significantly at a pore size 285 times the virus diameter.  相似文献   

17.
The nicotinic acetylcholine (ACh) receptor is the neurotransmitter-gated ion channel responsible for the rapid propagation of electrical signals between cells at the nerve/muscle synapse. We report here the 4.6 A structure of this channel in the closed conformation, determined by electron microscopy of tubular crystals of Torpedo postsynaptic membranes embedded in amorphous ice. The analysis was conducted on images recorded at 4 K with a 300 kV field emission source, by combining data from four helical families of tubes (-16,6; -18,6; -15,7; -17,5), and applying three-dimensional corrections for lattice distortions. The study extends earlier work on the same specimen at 9 A resolution.Several features having functional implications now appear with better definition. The gate of the channel forms a narrow bridge, consisting of no more than one or two rings of side-chains, across the middle portion of the membrane-spanning pore. Tunnels, framed by twisted beta-sheet strands, are resolved in the extracellular wall of the channel connecting the water-filled vestibule to the putative ACh-binding pockets. A set of narrow openings through which ions can flow are resolved between alpha-helical segments forming part of the cytoplasmic wall of the channel. It is suggested that the extracellular tunnels are access routes to the binding pockets for ACh, and that the cytoplasmic openings serve as filters to exclude anions and other impermeant species from the vicinity of the pore. Both transverse pathways are likely to be important in achieving a rapid postsynaptic response.  相似文献   

18.
Phospholamban (PLB) is an integral membrane protein of 52 residues that regulates the activity of the sarcoplasmic reticulum calcium pump in cardiac muscle cells through reversible phosphorylation of Ser16. To explore its possible conformations and dynamics in a monomeric state, we have performed comparative molecular dynamics simulations of unphosphorylated and phosphorylated PLB (pPLB) with various orientations in POPC membranes. The simulations indicate that dynamics of the cytoplasmic domain is highly dependent on its interactions with membranes, that is, large conformational changes in the absence of membrane interactions, but very restricted dynamics in their presence. pPLB shows more structural flexibility in its cytoplasmic domain, which is consistent with experimental observations. We have also performed a simulation of a PLB pentameric structure (the so‐called bellflower model), recently determined in micelles, to investigate its behaviors in a POPC membrane. The cytoplasmic domain in each monomer shows uncorrelated dynamics and undergoes large conformational changes toward the membrane surface during the simulation, which supports the so‐called pinwheel model of the PLB pentamer structure. The hydrophobic nature of the pentameric pore excludes water molecules in the pore region, which illustrates that the pore appears to be an energetic barrier for ion and water translocation. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
The pore through which a Paramecium contractile vacuole communicates with the external environment is a 1.2 μm long and 1 μm diameter cylindrical orifice in the pellicle. During diastole, the vacuole:pore junction is closed by a substantial diaphragm which parts to the side at systole. The diaphragm is composed of inner and outer membranes continuous with the vacuole and pore membranes, respectively, and an intervening cytoplasmic layer containing filaments and irregular membranous tubules and vesicles. Microtubules, organized into 2 sets, are an important component of the pore apparatus. One set of ~ 16 microtubules forms an annulus around the pore. These microtubules are organized into a right-handed helix with a pitch of 0.5-0.6 μm, and thus complete slightly more than 2 turns in their course from the level of the diaphragm to the pore outer lip. They appear to be embedded in a layer of dense material immediately adjacent to the pore membrane. The other set consists of 5 or more bands of 10–20 microtubules which radiate in a slight left-handed helix from an insertion at the pore out over the vacuole surface to the ampullae.  相似文献   

20.
L-DOPA production from tyrosinase immobilized on nylon 6,6   总被引:1,自引:0,他引:1  
The production of L-DOPA immobilized on chemically modified nylon 6,6 membranes was studied in a batch reactor. Tyrosinase was immobilized on nylon using glutaraldehyde as a crosslinking agent. The effects of membrane pore size and glutaraldehyde concentration upon enzyme uptake and L-DOPA production were investigated. Enzyme uptake was unaffected by glutaraldehyde concentration; approximately 70% uptake was observed when 25% w/v (group 1), 5% (group 2), and 3% (group 3) glutaraldehyde were used, indicating that glutaraldehyde was in excess. Similarly, uptake was the same for membranes with 0.20 and 10 mum pore sizes.Membranes produced using different levels of glutaraldehyde exhibited dramatically different capacities for L-DOPA production, despite the fact that enzyme uptake was equivalent. Membranes from groups 2 and 3 (5% and 3% glutaraldehyde) produced L-DOPA at a rate of 1.70 mg L(-1) h(-1) over 170 h in a 500-mL batch reactor. However, no free L-DOPA was detected when group 1 membranes were used. Experimental evidence suggests that L-DOPA was produced, but remained bound to these membranes via excess glutaraldehyde left over from the immobilization process. Membrane pore size also effected L-DOPA production; less production was observed when 10-mum membranes were used, despite equivalent enzyme uptake. The observed difference in production may be due to differences in the pore density on the two types of membranes which could affect the access of the substrate to the immobilized enzyme.The results of these studies indicate that tyrosinase can be effectively immobilized on nylon 6,6. L-DOPA production was optimal when 0.20-mum-pore-size membranes were activated with 3-5% glutaraldehyde. Stability studies indicated a 20% reduction in activity over 14 days when the immobilized enzyme was used under turnover conditions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号