首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Colletotrichum lagenarium, which is the causal agent of cucumber anthracnose, PEX6 is required for peroxisome biogenesis and appressorium-mediated infection. To verify the roles of peroxisome-associated metabolism in fungal pathogenicity, we isolated and functionally characterized ICL1 of C. lagenarium, which encodes isocitrate lyase involved in the glyoxylate cycle in peroxisomes. The icl1 mutants failed to utilize fatty acids and acetate for growth. Although Icl1 has no typical peroxisomal targeting signals, expression analysis of the GFP-Icl1 fusion protein indicated that Icl1 localizes in peroxisomes. These results indicate that the glyoxylate cycle that occurs inside the peroxisome is required for fatty acid and acetate metabolism for growth. Importantly, in contrast with the pex6 mutants that form nonmelanized appressoria, the icl1 mutants formed appressoria that were highly pigmented with melanin, suggesting that the glyoxylate cycle is not essential for melanin biosynthesis in appressoria. However, the icl1 mutants exhibited a severe reduction in virulence. Appressoria of the icl1 mutants failed to develop penetration hyphae in the host plant, suggesting that ICL1 is involved in host invasion. The addition of glucose partially restored virulence of the icl1 mutant. Heat shock treatment of the host plant also enabled the icl1 mutants to develop lesions, implying that the infection defect of the icl1 mutant is associated with plant defense. Together with the requirement of PEX6 for appressorial melanization, our findings suggest that peroxisomal metabolic pathways play functional roles in appressorial melanization and subsequent host invasion steps, and the latter step requires the glyoxylate cycle.  相似文献   

2.
Genes involved in fatty acid catabolism have undergone extensive duplication in the genus Mycobacterium, which includes the etiologic agents of leprosy and tuberculosis. Here, we show that prokaryotic- and eukaryotic-like isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL) are jointly required for fatty acid catabolism and virulence in Mycobacterium tuberculosis. Although deletion of icl1 or icl2, the genes that encode ICL1 and ICL2, respectively, had little effect on bacterial growth in macrophages and mice, deletion of both genes resulted in complete impairment of intracellular replication and rapid elimination from the lungs. The feasibility of targeting ICL1 and ICL2 for chemical inhibition was shown using a dual-specific ICL inhibitor, which blocked growth of M. tuberculosis on fatty acids and in macrophages. The absence of ICL orthologs in mammals should facilitate the development of glyoxylate cycle inhibitors as new drugs for the treatment of tuberculosis.  相似文献   

3.
Four mutants specifically deficient in the activity of isocitrate lyase were independently isolated in the alkane yeast Saccharomycopsis lipolytica. Genetic analysis by means of protoplast fusion and mitotic haploidization revealed that the mutations were recessive and non-complementary at a single genetic locus, icl. icl is a structural gene for isocitrate lyase, because some revertants from icl-1 and icl-3 mutants produced thermolabile isocitrate lyase in comparison with the wild-type enzyme, and also because the gene dosage effect was observed on the specific activity of isocitrate lyase in icl+/icl-1 and icl+/icl-3 heterozygotes. The icl-3 mutation also gave rise to temperature-sensitive revertants that could grow on acetate at 23 degrees C but not at 33 degrees C, exhibiting temperature-sensitive synthesis as well as thermostable activity of isocitrate lyase. Studies on purified isocitrate lyase showed that this enzyme is tetrameric and that the enzyme synthesized at 23 degrees C by a temperature-sensitive synthesis mutant was indistinguishable from the wild-type enzyme with respect to the subunit molecular weight (59,000), the isoelectric pH (5.3), the thermostability, and the Km value for threo-Ds-isocitrate (0.2 mM). When induced by acetate at 33 degrees C, the temperature-sensitive synthesis mutant did not express isocitrate lyase activity but did synthesize polypeptides whose electrophoretic mobilities were equal to that of the purified mutant enzyme. Hence, the temperature-sensitive mutation assumed in the structural gene for isocitrate lyase might have prevented the maturation of the polypeptide chains synthesized at the restrictive temperature.  相似文献   

4.
The glyoxylate cycle is essential for the utilization of C2 compounds by the yeast Saccharomyces cerevisiae. Within this cycle, isocitrate lyase catalyzes one of the key reactions. We obtained mutants lacking detectable isocitrate lyase activity, screening for their inability to grow on ethanol. Genetic and biochemical analysis suggested that they carried a defect in the structural gene, ICL1. The mutants were used for the isolation of this gene and it was located on a 3.1-kb BglII-SphI DNA fragment. We then constructed a deletion-substitution mutant in the haploid yeast genome. It did not have any isocitrate lyase activity and lacked the ability to grow on ethanol as the sole carbon source. Both strands of a DNA fragment carrying the gene and its flanking regions were sequenced. An open reading frame of 1671 bp was detected, encoding a protein of 557 amino acids with a calculated molecular mass of 62515 Da. The deduced amino acid sequence shows extensive similarities to genes encoding isocitrate lyases from various organisms. Two putative cAMP-dependent protein-kinase phosphorylation sites may explain the susceptibility of the enzyme to carbon catabolite inactivation.  相似文献   

5.
6.
In Colletotrichum lagenarium, which is the causal agent of cucumber anthracnose, PEX6 is required for peroxisome biogenesis and appressorium-mediated infection. To verify the roles of peroxisome-associated metabolism in fungal pathogenicity, we isolated and functionally characterized ICL1 of C. lagenarium, which encodes isocitrate lyase involved in the glyoxylate cycle in peroxisomes. The icl1 mutants failed to utilize fatty acids and acetate for growth. Although Icl1 has no typical peroxisomal targeting signals, expression analysis of the GFP-Icl1 fusion protein indicated that Icl1 localizes in peroxisomes. These results indicate that the glyoxylate cycle that occurs inside the peroxisome is required for fatty acid and acetate metabolism for growth. Importantly, in contrast with the pex6 mutants that form nonmelanized appressoria, the icl1 mutants formed appressoria that were highly pigmented with melanin, suggesting that the glyoxylate cycle is not essential for melanin biosynthesis in appressoria. However, the icl1 mutants exhibited a severe reduction in virulence. Appressoria of the icl1 mutants failed to develop penetration hyphae in the host plant, suggesting that ICL1 is involved in host invasion. The addition of glucose partially restored virulence of the icl1 mutant. Heat shock treatment of the host plant also enabled the icl1 mutants to develop lesions, implying that the infection defect of the icl1 mutant is associated with plant defense. Together with the requirement of PEX6 for appressorial melanization, our findings suggest that peroxisomal metabolic pathways play functional roles in appressorial melanization and subsequent host invasion steps, and the latter step requires the glyoxylate cycle.  相似文献   

7.
Pseudomonas aeruginosa PAO1 mutants affected in acyclic monoterpenes, n-octanol, and acetate assimilation were isolated using transposon mutagenesis. The isocitrate lyase gene (aceA) corresponding to ORF PA2634 of the PAO1 strain genome was identified in one of these mutants. The aceA gene encodes a protein that is 72% identical to the isocitrate lyase (ICL) characterized from Colwellia maris, but is less than 30% identical to their homologues from pseudomonads. The genetic arrangement of aceA suggests that it is a monocistronic gene, and no adjacent related genes were found. The ICL protein was detected as a 60-kDa band in sodium dodecyl sulfate polyacrylamide gel electrophoresis from cultures grown on acetate, but not in glucose-grown PAO1 cultures. Genetic complementation further confirmed that the aceA gene encodes the ICL enzyme. The ICL enzyme activity in crude extracts from cultures of the PAO1 strain was induced by acetate, citronellol and leucine, and repressed by growth on glucose or citrate. These results suggest that ICL is involved in the assimilation of acetate, acyclic monoterpenes of the citronellol family, alkanols, and leucine, in which the final intermediary acetyl-coenzyme A may be channelled to the glyoxylate shunt.  相似文献   

8.
We describe the isolation and characterization of ICL1 from the rice blast fungus Magnaporthe grisea, a gene that encodes isocitrate lyase, one of the principal enzymes of the glyoxylate cycle. ICL1 shows elevated expression during development of infection structures and cuticle penetration, and a targeted gene replacement showed that the gene is required for full virulence by M. grisea. In particular, we found that the prepenetration stage of development, before entry into plant tissue, is affected by loss of the glyoxylate cycle. There is a delay in germination, infection-related development and cuticle penetration in Delta icl1 mutants. Recent reports have shown the importance of the glyoxylate cycle in the virulence of the human pathogenic fungus Candida albicans and the bacterial pathogen Mycobacterium tuberculosis. Our results indicate that the glyoxylate cycle is also important in this plant pathogenic fungus, demonstrating the widespread utility of the pathway in microbial pathogenesis.  相似文献   

9.
We have cloned and characterized the gene PYC1, encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica. The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica, was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.  相似文献   

10.
The role of isocitrate lyase (ICL) in the glyoxylate cycle and its necessity for persistence and virulence of Mycobacterium tuberculosis has been well described. Recent reports have alluded to an additional role for this enzyme in M. tuberculosis metabolism, specifically for growth on propionate. A product of beta-oxidation of odd-chain fatty acids is propionyl-CoA. Clearance of propionyl-CoA and the by-products of its metabolism via the methylcitrate cycle is vital due to their potentially toxic effects. Although the genome of M. tuberculosis encodes orthologues of two of the three enzymes of the methylcitrate cycle, methylcitrate synthase and methylcitrate dehydratase, it does not appear to contain a distinct 2-methylisocitrate lyase (MCL). Detailed structural analysis of the MCL from Escherichia coli suggested that the differences in substrate specificity between MCLs and ICLs could be attributed to three conserved amino acid substitutions in the active site, suggesting an MCL signature. However, here we provide enzymatic evidence that shows that despite the absence of the MCL signature, ICL1 from M. tuberculosis can clearly function as a MCL. Furthermore, the crystal structure of ICL1 with pyruvate and succinate bound demonstrates that the active site can accommodate the additional methyl group without significant changes to the structure.  相似文献   

11.
In Escherichia coli and Aspergillus nidulans, propionate is oxidized to pyruvate via the methylcitrate cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate is catalysed by 2-methylisocitrate lyase. The enzymes from both organisms were assayed with chemically synthesized threo-2-methylisocitrate; the erythro-diastereomer was not active. 2-Methylisocitrate lyase from E. coli corresponds to the PrpB protein of the prp operon involved in propionate oxidation. The purified enzyme has a molecular mass of approximately 32 kDa per subunit, which is lower than those of isocitrate lyases from bacterial sources ( approximately 48 kDa). 2-Methylisocitrate lyase from A. nidulans shows an apparent molecular mass of 66 kDa per subunit, almost equal to that of isocitrate lyase of the same organism. Both 2-methylisocitrate lyases have a native homotetrameric structure as identified by size-exclusion chromatography. The enzymes show no measurable activity with isocitrate. Starting from 250 mM pyruvate, 150 mM succinate and 10 microM PrpB, the enzymatically active stereoisomer could be synthesized in 1% yield. As revealed by chiral HPLC, the product consisted of a single enantiomer. This isomer is cleaved by 2-methylisocitrate lyases from A. nidulans and E. coli. The PrpB protein reacted with stoichiometric amounts of 3-bromopyruvate whereby the activity was lost and one amino-acid residue per subunit became modified, most likely a cysteine as shown for isocitrate lyase of E. coli. PrpB exhibits 34% sequence identity with carboxyphosphoenolpyruvate phosphonomutase from Streptomyces hygroscopicus, in which the essential cysteine residue is conserved.  相似文献   

12.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

13.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

14.
15.
为提高树干毕赤酵母发酵生产琥珀酸的产量,借助基因组规模代谢网络模型iTL885获得琥珀酸合成的最佳代谢途径为扩增icl1基因和敲除sdh1基因。在此基础上,借助代谢工程策略构建过量表达异柠檬酸裂解酶基因icl1的重组菌株FPLicl、缺失琥珀酸脱氢酶基因sdh1的重组菌株FPLΔsdh和缺失sdh1基因同时过量表达icl1基因的重组菌株FPLΔsdh-icl。结果表明:3株重组菌的异柠檬酸裂解酶活性由0.33 U/mg分别增加为1.6、5.6和6.6U/mg;而琥珀酸脱氢酶活性则从13.8 U/mg分别降为10.7、0.3和0.3 U/mg。在以木糖为C源的培养基中,3株重组菌生产琥珀酸的能力分别是0.30、1.20和1.60 g/L。  相似文献   

16.
Li J  Zhu D  Yi Z  He Y  Chun Y  Liu Y  Li N 《Oligonucleotides》2005,15(3):215-222
Latent infection with Mycobacterium tuberculosis presents a big obstacle for tuberculosis therapy. In this study, we investigated the effects of sequence-specific DNAzymes targeting the mRNA of isocitrate lyase (ICL), an enzyme playing a pivotal role in the metabolism of M. tuberculosis in the latent state, on the expression of ICL and survival of M. tuberculosis. In vitro studies showed that four of five designed DNAzymes, DZ1, DZ3, DZ4, and DZ5 could cleave icl mRNA efficiently and specifically. Treatment of virulent M. tuberculosis with 5microM DZ4 plus a subinhibitory concentration of isoniazid (INH) decreased ICL expression and the survival of M. tuberculosis in macrophages but had no obvious influence on the growth of M. tuberculosis in vitro. This study demonstrates that using INH to soften the cell wall of M. tuberculosis and help the entry of biomolecules is an efficient method of improving the uptake of DNAzymes. Silencing the icl gene by DNAzyme is a promising method to combat latent infection of tuberculosis.  相似文献   

17.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO? into biomass. As the human host is abundant in CO? this finding requires further investigation in vivo as CO? fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.  相似文献   

18.
The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.  相似文献   

19.
Biomass yields for several null mutants in Saccharomyces cerevisiae were successfully predicted with a metabolic network model. Energetic parameters of the model were obtained from growth data in C-limited aerobic chemostat cultures of the corresponding wild-type strain, which exhibited a P/O ratio of 1.46, a non-growth-related maintenance of 56 mmol ATP/C-mol biomass/h, and a growth-related requirement of 655 mmol ATP/C-mol biomass. Biomass yields and carbon uptake rates were modeled for different mutants incapacitated in their glyoxylate cycle and their gluconeogenesis. Biomass yields were calculated for different feed ratios of glucose to ethanol, and decreases for higher ethanol fractions were correctly predicted for mutants with deletions of the malate synthase, the isocitrate lyase, or the phosphoenolpyruvate carboxykinase. The growth of the fructose- 1,6-bisphosphatase deletion mutant was anticipated less accurate, but the tendency was modeled correctly.  相似文献   

20.
Halisulfate 1, a sesterterpene sulfate and an isocitrate lyase (ICL) inhibitor that is isolated from tropical sponge Hippospongia spp., reduces both appressorium formation and infection of rice plants by the fungus Magnaporthe grisea. Rice plants infected with wild-type M. grisea Guy 11 exhibited significantly lower disease severity after halisulfate 1 treatment than without, and the treatment effect was comparable to the behavior of the Delta icl knockout mutant I-10. The protection observed upon applying halisulfate 1 to rice plants suggests that the ICL inhibitor may be a promising candidate for crop protection, particularly to protect rice plants against M. grisea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号