首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This analysis evaluates the effects on lipoprotein subfractions and LDL particle size of ezetimibe/simvastatin with or without coadministration of fenofibrate in patients with mixed hyperlipidemia. This multicenter, double-blind, placebo-controlled, parallel-group study included 611 patients aged 18-79 years randomized in 1:3:3:3 ratios to one of four 12 week treatment groups: placebo; ezetimibe/simvastatin 10/20 mg/day; fenofibrate 160 mg/day; or ezetimibe/simvastatin 10/20 mg/day + fenofibrate 160 mg/day. At baseline and study endpoint, cholesterol associated with VLDL, intermediate density lipoprotein (IDL), LDL, and HDL subfractions was quantified using the Vertical Auto Profile II method. LDL particle size was determined using segmented gradient gel electrophoresis. Whereas fenofibrate reduced cholesterol mass within VLDL and IDL, and shifted cholesterol from dense LDL subfractions into the more buoyant subfractions and HDL, ezetimibe/simvastatin reduced cholesterol mass within all apolipoprotein B-containing particles without significantly shifting the LDL particle distribution profile. When administered in combination, the effects of the drugs were complementary, with more-pronounced reductions in VLDL, IDL, and LDL, preferential loss of more-dense LDL subfractions, and increased HDL, although the effects on most lipoprotein subfractions were not additive. Thus, ezetimibe/simvastatin + fenofibrate produced favorable effects on atherogenic lipoprotein subclasses in patients with mixed hyperlipidemia.  相似文献   

2.
A total of six established human hepatoma-derived cell lines, including Hep3B, NPLC/PRF/5 (NPLC), Tong/HCC, Hep 10, huH1, and huH2, were screened for their ability to accumulate significant quantities of lipoproteins in serum-free medium. Only two cell lines, Hep3B and NPLC, secreted quantitatively significant amounts of lipoproteins. In a 24-h period the accumulated mass of apolipoproteins (apo) A-I, A-II, B, and E and albumin for Hep3B cells was 1.96, 1.01, 1.96, 1.90, and 53.2 micrograms/mg cell protein per 24 h, respectively. NPLC cells secreted no detectable albumin but the 24-h accumulated mass for apolipoproteins A-I, A-II, B, and E was 0.45, 0.05, 0.32, and 0.68 micrograms/mg cell protein per 24 h, respectively. Twenty four-hour serum-free medium of Hep3B cells contained lipoproteins corresponding to the three major density classes of plasma; percent protein distribution among the lipoprotein classes was 4%, 41%, and 56% for very low density lipoprotein ("VLDL"), low density lipoprotein ("LDL"), and high density lipoprotein ("HDL"), respectively. NPLC was unusual since most of the lipoprotein mass was in the d 1.063-1.235 g/ml range. Hep3B "LDL", compared with plasma LDL, contained elevated triglyceride, phospholipid, and free cholesterol. Nondenaturing gradient gel electrophoresis revealed that Hep3B "LDL" possessed a major component at 25.5 nm and a minor one at 18.3 nm. Immunoblots showed that the former contained only apoB while the latter possessed only apoE. Like plasma VLDL, Hep3B "VLDL" particles (30.5 nm diameter) isolated from serum-free medium contained apoB, apoC, and apoE. "HDL" harvested from Hep3B and NPLC medium were enriched in phospholipid and free cholesterol and poor cholesteryl ester which is similar to the composition of HepG2 "HDL." "HDL" from Hep3B and NPLC culture medium on gradient gel electrophoresis had peaks at 7.5, 10, and 11.9 nm which were comparable to major components found in HepG2 cell medium. Hep3B cells, in addition, possessed a particle that banded at 8.2 nm which appeared to be an apoA-II without apoA-I particle by Western blot analysis. The cell line also produced a subpopulation of larger-sized "HDL" not found in HepG2 medium. NPLC "HDL" had a distinct peak at 8.3 nm which by Western blot was an apoE-only particle. Electron microscopy revealed that "HDL" harvested from Hep3B and NPLC medium consisted of discoidal and small, spherical particles like those of HepG2. The "HDL" apolipoprotein content of each cell line was distinct from that of HepG2. ApoA-II at 35% of apolipoprotein distinguishes Hep3B "HDL" from HepG2, which contains only 10%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Testosterone administration to men is known to decrease high-density lipoprotein cholesterol (HDL-C) and the subclasses HDL(2) and HDL(3). It also might increase the number of small, dense, low-density lipoprotein cholesterol (LDL-C) particles in hypogonadal men. The decrease in HDL-C and in LDL-C size is potentially mediated by hepatic lipase activity, which hydrolyzes lipoprotein phospholipids and triacylglycerol. To determine how HDL-C and LDL-C particles are affected by testosterone administration to eugonadal men, testosterone was administered as a supraphysiological dose (600 mg/wk) for 3 wk to elderly, obese, eugonadal men before elective hip or knee surgery, and lipids were measured by routine methods and by density gradient ultracentrifugation. Hepatic lipase activity increased >60% above baseline levels, and HDL-C, HDL(2), and HDL(3) significantly declined in 3 wk. In addition, the LDL-C peak particle density and the amount of LDL-C significantly increased. Testosterone is therefore a potent stimulator of hepatic lipase activity, decreasing HDL-C, HDL(2), and HDL(3) as well as increasing LDL particle density changes, all associated with increased cardiovascular risk.  相似文献   

4.
Particle size distributions of high-density (HDL) and low-density (LDL) lipoproteins, obtained by polyacrylamide gradient gel electrophoresis, exhibit apparent predominant and minor peaks within characteristic subpopulation migration intervals. In the present report, we show that identification of such peaks as predominant or minor depends on whether the particle size distribution is analyzed according to migration distance or particle size. The predominant HDL peak on the migration distance scale is frequently not the predominant HDL peak when the distribution is transformed to the particle size scale. The potential physiologic importance of correct identification of the predominant HDL peak within a gradient gel electrophoresis profile is suggested by our cross-sectional study of 97 men, in which diameters associated with the predominant peak, determined using migration distance and particle size scales, were correlated with plasma lipoprotein and lipid parameters. Plasma concentrations of HDL-cholesterol, triglycerides, and apolipoproteins A-I and B correlated more strongly with the predominant peak obtained using the particle size scale than the migration distance scale. The mathematical transformation from migration distance to particle diameter scale had less effect on the LDL distribution. The additional computational effort required to transform the HDL-distribution into the particle size scale appears warranted given the substantial changes it produces in the gradient gel electrophoresis profile and the strengthening of correlations with parameters relevant to lipoprotein metabolism.  相似文献   

5.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

6.
We sought to partition the genetic and environmental influences on lipoprotein subclasses and identify genomic regions that may harbor genetic variants that influence serum lipoprotein levels in a sample of Gullah-speaking African-Americans. We genotyped 5,974 SNPs in 979 subjects from 418 pedigrees and used the variance component approach to compute heritability estimates, genetic and environmental correlations, and linkage analyses for selected lipoprotein subclasses. The highest heritability estimate was observed for large VLDL particle concentration (0.56 ± 0.14). Mean LDL particle size and small LDL particle concentration (−0.94) had the strongest genetic correlation estimate. The highest logarithm of odds (LOD) score detected (3.0) was on chromosome 6p24 for small LDL particle concentration. The strongest signal, obtained with the reduced sample of diabetic individuals only, was observed on chromosome 20p13 for small LDL particle concentration. The highest bivariate linkage signal (LOD 2.4) was observed on chromosome 6p24 for mean LDL particle size and small LDL particle concentration.jlr Our results suggest a significant genetic contribution to multiple lipoprotein subclasses studied in this sample and that novel loci on chromosomes 6, 10, 16, and 20 may harbor genes contributing to small, atherogenic LDL particle concentration and large, triglyceride-rich VLDL particle concentration.  相似文献   

7.
Separation of lipoproteins by traditional sequential salt density floatation is a prolonged process ( approximately 72 h) with variable recovery, whereas iodixanol-based, self-generating density gradients provide a rapid ( approximately 4 h) alternative. A novel, three-layered iodixanol gradient was evaluated for its ability to separate lipoprotein fractions in 63 subjects with varying degrees of dyslipidemia. Lipoprotein cholesterol, triglycerides, and apolipoproteins were measured in 21 successive iodixanol density fractions. Iodixanol fractionation was compared with sequential floatation ultracentrifugation. Iodixanol gradient formation showed a coefficient of variation of 0.29% and total lipid recovery from the gradient of 95.4% for cholesterol and 84.7% for triglyceride. Recoveries for VLDL-, LDL-, and HDL-cholesterol, triglycerides, and apolipoproteins were approximately 10% higher with iodixanol compared with sequential floatation. The iodixanol gradient effectively discriminated classic lipoproteins and their subfractions, and there was evidence for improved resolution of lipoproteins with the iodixanol gradient. LDL particles subfractionated by the gradient showed good correlation between density and particle size with small, dense LDL (<25.5 nm) separated in fractions with density >1.028 g/dl. The new iodixanol density gradient enabled rapid separation with improved resolution and recovery of all lipoproteins and their subfractions, providing important information with regard to LDL phenotype from a single centrifugation step with minimal in-vitro modification of lipoproteins.  相似文献   

8.
Lesion-free areas of aortic intimas from seven men, 30 to 49 years old, were extracted with aqueous buffer within a few hours after an accidental or sudden death. Two lipoprotein fractions could be isolated by density gradient ultracentrifugation from all cases. The mean composition of fraction I (d less than 1.012 g/ml) resembled that reported for the cholesteryl ester-rich, beta-migrating very low density lipoprotein (beta-VLDL); the composition of fraction II (d 1.021-1.046 g/ml) resembled that of plasma low density lipoprotein (LDL). Mean diameter of the particles was 35 +/- 8 nm in fraction I and 25 +/- 5 nm in fraction II (22 +/- 2 nm in plasma LDL). Both fractions contained apolipoproteins B (apoB) and E (apoE), and had increased electrophoretic mobilities and reduced contents of linoleic acid. The immunoreactivity of apoB to a polyclonal and two monoclonal antibodies in both fractions was not different from that of plasma lipoproteins. The apoE isoform patterns in both fractions were similar to those obtained from the respective postmortem plasmas. When incubated with mouse peritoneal macrophages, fractions I and II enhanced the incorporation of radioactive oleate into cholesteryl esters by 10- to 20-fold and 3- to 4-fold, respectively, in comparison to plasma LDL. In conclusion, our results indicate that lesion-free human aortic intima contains two types of apoB- and apoE-containing lipoprotein particles, both of which might be potentially atherogenic.  相似文献   

9.
Heterogeneity in the size of low-density lipoprotein (LDL) particles was used to identify two distinct patterns based on gradient gel electrophoresis analysis. These two phenotypes, LDL subclass pattern A and pattern B, were characterized by a predominance of large, buoyant LDL particles and small, dense LDL particles, respectively. The inheritance of these LDL subclass patterns was investigated in a sample of 61 healthy families including 301 individuals. LDL subclass pattern B was present in 31% of the subjects, with the prevalence varying by gender, age, and (in women) menopausal status. Complex segregation analysis suggested a major locus controlling LDL subclass patterns. The model providing the best fit to the data included a dominant mode of inheritance with a frequency of .25 for the allele determining LDL subclass pattern B and reduced penetrance for men under age 20 and for premenopausal women. Thus, the allele for the LDL subclass pattern characterized by a predominance of small, dense LDL particles appears to be very common in the population, although not usually expressed until adulthood in men and until after menopause in women. The presence of a major gene controlling LDL subclass could explain much of the familial aggregation of lipid and apolipoprotein levels and may be involved in increased risk of coronary heart disease.  相似文献   

10.
Low-density lipoprotein (LDL) particle size has been associated with coronary heart disease, but an association between LDL size and preclinical atherosclerosis is less well established. Using gradient gel electrophoresis, large (A), intermediate (I) and small (B) LDL size subclasses were determined in 198 cases with asymptomatic carotid artery atherosclerosis (determined by B-mode ultrasonography) and 318 controls from the Atherosclerosis Risk in Communities (ARIC) Study. In Caucasians, a smaller LDL size was more prevalent in men and associated with a higher body mass index, hypertension prevalence, and plasma total- and LDL-cholesterol and triglycerides, but lower HDL-cholesterol. In African-Americans, a smaller LDL size was associated with higher triglycerides and lower HDL-cholesterol and hypertension prevalence. In Caucasians, Subclass B prevalence was 29.1% among cases and 14.8% among controls. The odds ratio (95% confidence interval) for Subclass B rather than Subclass A in Caucasian cases was 2.94 (1.67-5.17); the association remained significant after controlling for age, body mass index, smoking, and either plasma triglycerides or HDL-cholesterol. In African-Americans, however, there was no significant association between LDL subclass and case status. A predominance of smaller LDL particles is associated with asymptomatic carotid artery atherosclerosis in Caucasians, through mechanisms that remain to be elucidated.  相似文献   

11.
Hypercholesterolemia is characterized by elevated plasma levels of LDL in which the cholesteryl ester (CE)-rich LDL subclasses of light and intermediate density (LDL1+2 and LDL3, respectively) typically predominate. The molecular mechanisms implicated in oxidation of LDL particle subclasses in hypercholesterolemia are indeterminate. Lipid hydroperoxides (LOOH), primary oxidation products in LDL, are implicated in atherogenesis. LOOH formation was evaluated in light (LDL1+2), intermediate (LDL3), and dense (LDL4+5) LDL subclasses from hypercholesterolemic (HC) subjects (n = 7) during copper-mediated oxidative stress, and compared with that in corresponding subclasses from normolipidemic subjects (n = 7). HC LDL subclasses were distinguished by lower polyunsaturated phospholipid-alpha-tocopherol ratios (P < 0.02), lower contents of phosphatidyl choline (PC)16:0-18:0/18:2 and PC16:0-18:0/20:4+22:6 (P < 0.002), and higher surface phospholipid-free cholesterol ratios (P < 0.04). The LDL3, LDL4, and LDL5 subclasses in HC subjects displayed low-core polyunsaturated CE-alpha-tocopherol ratios (P < 0.05), despite similar PUFA CE content. These physicochemical differences did not modify the oxidative susceptibility of HC LDL but underlie the marked instability of cholesterol linoleate hydroperoxides in HC LDL1+2, LDL3, and LDL4 subclasses.Elevated concentrations of large, CE-rich, light, and intermediate LDL subclasses (LDL1+2, LDL3) in hypercholesterolemia may therefore act as an abundant proatherogenic source of highly unstable LOOH in the arterial wall.  相似文献   

12.
1. The metabolism of apolipoprotein B (apoB) was investigated in pigs injected with [125I]very low density lipoproteins (VLDL) to determine to which extent the two distinct low density lipoprotein subclasses (LDL1 and LDL2) derive from VLDL. 2. The lipoproteins were isolated by density gradient ultracentrifugation and the transfer of radioactivity from VLDL into LDL1 and LDL2 apoB was measured. 3. Only a minor portion of VLDL apoB was converted to LDL1 (7.7 +/- 3.2%) and LDL2 (3.6 +/- 1.5%), respectively. Thus, we conclude that the major portion of LDL, especially LDL2, is synthesized independently from VLDL catabolism.  相似文献   

13.
Inbred mouse strains C57BL/6J (B6) (susceptible) and C3H/HeJ (C3H) (resistant) differ in atherosclerosis susceptibility due to a single gene, Ath-1. Plasma lipoproteins from female mice fed chow or an atherogenic diet displayed strain differences in lipoprotein particle sizes and apolipoprotein (apo) composition. High density lipoprotein (HDL) particle sizes were 9.5 +/- 0.1 nm for B6 and 10.2 +/- 0.1 nm for C3H. No major HDL particle size subclasses were observed. Plasma HDL level in the B6 strain was reduced by the atherogenic diet consumption while the HDL level in the resistant C3H mice was unaffected. The reduction in HDL in the B6 strain was associated with decreases in HDL apolipoproteins A-I(-34%) and A-II(-60%). The HDL apoC content in mice fed chow was two-fold higher in C3H than B6. Lipoproteins containing apolipoprotein B (VLDL, IDL, LDL) shifted from a preponderance of the B-100 (chow diet) to a preponderance of the B-48 (atherogenic diet). The LDL-particle size distribution was strain-specific with the chow diet but not genetically associated with the Ath-1 gene. In both strains on each diet, apolipoprotein E was largely distributed in the VLDL, LDL, and HDL fractions. The B6 strain became sixfold elevated in total lipoprotein E content which in the C3H strain was not significantly affected by diet. However, the C3H LDL apoE content was reduced. On both diets, the C3H strain exhibited apolipoprotein E levels comparable to the atherogenic diet-induced levels of the B6 mice.  相似文献   

14.
Current data suggest that phospholipid transfer protein (PLTP) has multiple metabolic functions, however, its physiological significance in humans remains to be clarified. To provide further insight into the role of PLTP in lipoprotein metabolism, plasma PLTP activity was measured, and lipoproteins were analyzed in 134 non-diabetic individuals on a controlled diet. Insulin sensitivity index (Si) and body fat composition were also determined. Plasma PLTP activity was comparable between men (n=56) and women (n=78). However, in women but not in men, plasma PLTP activity was positively correlated with cholesterol, triglyceride, low density lipoprotein (LDL) cholesterol, and apolipoprotein (apo) B (r=0.38-0.45, P< or =0.001), and with body mass index (BMI), subcutaneous and intra-abdominal fat (SCF, IAF) (r=0.27-0.29, P<0.02). Among the different apo B-containing lipoproteins (LpB) in women, PLTP was most highly correlated with intermediate density lipoproteins (IDL) and buoyant LDL (r=0.45-0.46, P<0.001). The correlation with IDL was significant only in women with BMI < or =27.5 kg/m(2) (n=56). In men with BMI < or =27.5 kg/m(2) (n=35), PLTP activity was significantly correlated with buoyant LDL (r=0.40, P<0.02) and high density lipoprotein (HDL) (r=0.43, P<0.01). These data provide evidence for a role of PLTP in LpB metabolism, particularly IDL and buoyant LDL. They also suggest that gender and obesity-related factors can modulate the impact of PLTP on LpB.  相似文献   

15.
Small LDL and HDL particle size are characteristic of a proatherogenic lipoprotein profile. Aerobic exercise increases these particle sizes. Although visceral adipose tissue (VAT) has been strongly linked with dyslipidemia, the importance of intermuscular adipose tissue (IMAT) to dyslipidemia and exercise responses is less well understood. We measured exercise-associated changes in thigh IMAT and VAT and examined their relationships with changes in LDL and HDL particle size. Sedentary, dyslipidemic, overweight subjects (n = 73) completed 8-9 mo of aerobic training. Linear regression models were used to compare the power of IMAT change and VAT change to predict lipoprotein size changes. In men alone (n = 40), IMAT change correlated inversely with both HDL size change (r = -0.42, P = 0.007) and LDL size change (r = -0.52, P < 0.001). That is, reduction of IMAT was associated with a shift toward larger, less atherogenic lipoprotein particles. No significant correlations were observed in women. After adding VAT change to the model, IMAT change was the only significant predictor of either HDL size change (P = 0.034 for IMAT vs. 0.162 for VAT) or LDL size change (P = 0.004 for IMAT vs. 0.189 for VAT) in men. In conclusion, in overweight dyslipidemic men, exercise-associated change in thigh IMAT was inversely correlated with both HDL and LDL size change and was more predictive of these lipoprotein changes than was change in VAT. Reducing IMAT through aerobic exercise may be functionally related to some improvements in atherogenic dyslipidemia in men.  相似文献   

16.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Genomic regions that influence LDL particle size in African Americans are not known. We performed family-based linkage analyses to identify genomic regions that influence LDL particle size and also exert pleiotropic effects on two closely related lipid traits, high density lipoprotein cholesterol (HDL-C) and triglycerides, in African Americans. Subjects (n = 1,318, 63.0 +/- 9.5 years, 70% women, 79% hypertensive) were ascertained through sibships with two or more individuals diagnosed with essential hypertension before age 60. LDL particle size was measured by polyacrylamide gel electrophoresis, and triglyceride levels were log-transformed to reduce skewness. Genotypes were measured at 366 microsatellite marker loci distributed across the 22 autosomes. Univariate and bivariate linkage analyses were performed using a variance components approach. LDL particle size was highly heritable (h(2) = 0.78) and significantly (P < 0.0001) genetically correlated with HDL-C (rho(G) = 0.32) and log triglycerides (rho(G) = -0.43). Significant evidence of linkage for LDL particle size was present on chromosome 19 [85.3 centimorgan (cM), log of the odds (LOD) = 3.07, P = 0.0001], and suggestive evidence of linkage was present on chromosome 12 (90.8 cM, LOD = 2.02, P = 0.0011). Bivariate linkage analyses revealed tentative evidence for a region with pleiotropic effects on LDL particle size and HDL-C on chromosome 4 (52.9 cM, LOD = 2.06, P = 0.0069). These genomic regions may contain genes that influence interindividual variation in LDL particle size and potentially coronary heart disease susceptibility in African Americans.  相似文献   

18.
A new apolipoprotein, termed apolipoprotein J (apoJ), was purified from human plasma by immunoaffinity chromatography. ApoJ is a glycoprotein consisting of disulfide-linked subunits of 34-36 and 36-39 kDa. Each subunit is glycosylated and has a pI range of 4.9-5.4. ApoJ exists in the plasma associated with high density lipoproteins (HDL) and specifically with subclasses of HDL which also contain apoAI and cholesteryl ester transfer protein activity. Immunoaffinity purified apoJ-HDL subclasses have apparent molecular masses of 80, 160, 240, 340, and 520 kDa, as determined by gradient gel electrophoresis. By negative staining electron microscopy, apoJ-HDL range in diameter from 5 to 16 nm. Fractionation of plasma by vertical gradient density centrifugation revealed apoJ-HDL in HDL2 (d 1.063-1.125 g/ml) with the majority overlapping HDL3 (d 1.125-1.21 g/ml) and very high density lipoprotein (d 1.21-1.25 g/ml). The bimodal density distribution of apoJ-HDL suggests that these subclasses have a unique metabolic relationship and may play a role in the transport of cholesterol from peripheral tissues to the liver.  相似文献   

19.
A radical reaction of low-density lipoprotein (LDL) causes fragmentation and cross-link of apolipoprotein B-100 (apoB). LDL (50 microg/ml) was subjected to the well-studied oxidation with Cu(2+) (1.67 microM). The concentration of alpha-tocopherol decreased to 10% of the initial level during the first 30 min. After this lag time, the conjugated diene content, as measured by absorption at 234 nm, started increasing and the residual apoB at 512 kDa determined by immunoblot after SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) was also decreased. The particle size of LDL determined by nondenaturing gradient gel electrophoresis decreased steadily during the initial 120 min, when residual native apoB was only 30% of the initial level. Plasma was also oxidized with Cu(2+) (400 microM). Under this condition, a clear lag time was not observed and alpha-tocopherol content, apoB, and the LDL particle size were decreased simultaneously. Based on these experiments, we propose that an oxidation reaction is involved in the formation of small dense LDL.  相似文献   

20.
The density distribution of electronegative LDL [LDL(-)], a cytotoxic and inflammatory fraction of LDL present in plasma, was studied in 10 normolipemic (NL), 6 FH, and 11 hypertriglyceridemic (HTG) subjects. Six LDL subclasses of increased density (LDL1 to LDL6) were isolated by density-gradient ultracentrifugation (DGU). NL and FH subjects showed prevalence of light LDL, whereas HTG subjects showed prevalence of dense LDL. LDL(-) proportion was determined from total LDL or LDL-density subclasses by anion-exchange chromatography. LDL from FH patients had increased LDL(-) (35.1 +/- 9.9%) compared with LDL from NL and HTG subjects (9.4 +/- 2.3% and 12.3 +/- 4.3%, respectively). Most LDL(-) was contained in dense subclasses in NL (LDL4-6, 67.7 +/- 3.1%) whereas most of LDL(-) from FH patients were contained in light LDL subclasses (LDL1-3) (86.2 +/- 1.6%). In these subjects, simvastatin therapy decreased LDL(-) to 28.2 +/- 6.7% and 21.2 +/- 5.6% at 3 and 6 months of treatment, respectively, due mainly to decreases in light LDL subclasses. In HTG subjects, half LDL(-) was contained in dense LDL subclasses (LDL4-6, 46.1 +/- 2.0%). Non-denaturing acrylamide gradient gel electrophoresis concurred with DGU data, as LDL(-) from NL showed a single band of lower size than non-electronegative LDL [LDL(+)], whereas LDL(-) from FH and HTG presented bands of greater size than its respective LDL(+). These results reveal the existence of light and dense LDL(-), indicate that hyperlipemia could promote the formation of light LDL(-) and suggest that LDL(-) could have different origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号