首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of ceramide synthesized at the endoplasmic reticulum to the Golgi compartment, where sphingomyelin (SM) synthase exists, was reconstituted within semi-intact Chinese hamster ovary cells. When [(3)H]ceramide that had been produced from [(3)H]sphingosine at 15 degrees C in perforated cells was chased at 37 degrees C, [(3)H]ceramide-to-[(3)H]SM conversion occurred in a cytosol-dependent manner. In various aspects (i.e. kinetics, ATP dependence, and temperature dependence), [(3)H]ceramide-to-[(3)H]SM conversion in perforated cells was consistent with that in intact cells. The cytosol from LY-A strain, a Chinese hamster ovary cell mutant defective in endoplasmic reticulum-to-Golgi transport of ceramide, did not support [(3)H]ceramide-to-[(3)H]SM conversion in perforated wild-type cells, whereas the wild-type cytosol rescued the conversion in perforated LY-A cells. Brefeldin A-treated cells, in which the endoplasmic reticulum and the Golgi apparatus were merged, no longer required cytosol for conversion of [(3)H]ceramide to [(3)H]SM. These results indicated that the assay of [(3)H]ceramide-to-[(3)H]SM conversion in semi-intact cells is a faithful in vitro assay for the activity of cytosol-dependent transport of ceramide and that LY-A cells are defective in a cytosolic factor involved in ceramide transport. In addition, conversion of [(3)H]ceramide to [(3)H]glucosylceramide in semi-intact cells was little dependent on cytosol, suggesting that ceramide reached the site of glucosylceramide synthesis by a cytosol-independent (or less dependent) pathway.  相似文献   

2.
Previous studies demonstrated that sphingosine-1-phosphate (S1P) phosphohydrolase 1 (SPP-1), which is located mainly in the endoplasmic reticulum (ER), regulates sphingolipid metabolism and apoptosis (H. Le Stunff et al., J. Cell Biol. 158:1039-1049, 2002). We show here that the treatment of SPP-1-overexpressing cells with S1P, but not with dihydro-S1P, increased all ceramide species, particularly the long-chain ceramides. This was not due to inhibition of ceramide metabolism to sphingomyelin or monohexosylceramides but rather to the inhibition of ER-to-Golgi trafficking, determined with the fluorescent ceramide analog N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (DMB-Cer). Fumonisin B1, an inhibitor of ceramide synthase, prevented S1P-induced elevation of all ceramide species and corrected the defect in ER transport of DMB-Cer, readily allowing its detection in the Golgi. In contrast, ceramide accumulation had no effect on either the trafficking or the metabolism of 6-([N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl)-sphingosine, which rapidly labels the Golgi even at 4 degrees C. Protein trafficking from the ER to the Golgi, determined with vesicular stomatitis virus ts045 G protein fused to green fluorescent protein, was also inhibited in SPP-1-overexpressing cells in the presence of S1P but not in the presence of dihydro-S1P. Our results suggest that SPP-1 regulates ceramide levels in the ER and thus influences the anterograde membrane transport of both ceramide and proteins from the ER to the Golgi apparatus.  相似文献   

3.
LY-A strain is a Chinese hamster ovary cell mutant resistant to sphingomyelin (SM)-directed cytolysin and has a defect in de novo SM synthesis. Metabolic labeling experiments with radioactive serine, sphingosine, and choline showed that LY-A cells were defective in synthesis of SM from these precursors, but not syntheses of ceramide (Cer), glycosphingolipids, or phosphatidylcholine, indicating a specific defect in the conversion of Cer to SM in LY-A cells. In vitro experiments showed that the specific defect of SM formation in LY-A cells was not due to alterations in enzymatic activities responsible for SM synthesis or degradation. When cells were treated with brefeldin A, which causes fusion of the Golgi apparatus with the endoplasmic reticulum (ER), de novo SM synthesis in LY-A cells was restored to the wild-type level. Pulse-chase experiments with a fluorescent Cer analogue, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-D-erythro-sphingosine (C5-DMB-Cer), revealed that in wild-type cells C5-DMB-Cer was redistributed from intracellular membranes to the Golgi apparatus in an intracellular ATP-dependent manner, and that LY-A cells were defective in the energy-dependent redistribution of C5-DMB-Cer. Under ATP-depleted conditions, conversion of C5-DMB-Cer to C5-DMB-SM and of [3H]sphingosine to [3H]SM in wild-type cells decreased to the levels in LY-A cells, which were not affected by ATP depletion. ER-to-Golgi apparatus trafficking of glycosylphosphatidylinositol-anchored or membrane-spanning proteins in LY-A cells appeared to be normal. These results indicate that the predominant pathway of ER-to-Golgi apparatus trafficking of Cer for de novo SM synthesis is ATP dependent and that this pathway is almost completely impaired in LY-A cells. In addition, the specific defect of SM synthesis in LY-A cells suggests different pathways of Cer transport for glycosphingolipids versus SM synthesis.  相似文献   

4.
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a ribbon-like structure, with close apposition of trans Golgi regions with specialized endoplasmic reticulum (ER) membranes. These contacts may be the site of ceramide transfer from its site of synthesis (ER) to sphingomyelin (SM) synthase through ceramide transfer protein (CERT). CERT extracts ceramide from the ER and transfers it to Golgi membranes but the role of overall Golgi structure in this process is unknown. We show here that localization of CERT in puncta around the Golgi complex requires both ER- and Golgi-binding domains of CERT. To examine how Golgi structure contributes to SM synthesis, we treated cells with Golgi-perturbing drugs and measured newly synthesized SM. Interestingly, disruption of Golgi morphology with nocodazole, but not ilimaquinone inhibited SM synthesis. Decreased localization of CERT with a Golgi marker correlated with decreased SM synthesis. We propose that some Golgi structural perturbations interfere with efficient ceramide trafficking through CERT, and thus SM synthesis. The organization of the mammalian Golgi ribbon together with CERT may promote specific ER-Golgi interactions for efficient delivery of ceramide for SM synthesis.  相似文献   

5.
To identify novel inhibitors of sphingomyelin (SM) metabolism, a new and selective high throughput microscopy-based screening based on the toxicity of the SM-specific toxin, lysenin, was developed. Out of a library of 2011 natural compounds, the limonoid, 3-chloro-8β-hydroxycarapin-3,8-hemiacetal (CHC), rendered cells resistant to lysenin by decreasing cell surface SM. CHC treatment selectively inhibited the de novo biosynthesis of SM without affecting glycolipid and glycerophospholipid biosynthesis. Pretreatment with brefeldin A abolished the limonoid-induced inhibition of SM synthesis suggesting that the transport of ceramide (Cer) from the endoplasmic reticulum to the Golgi apparatus is affected. Unlike the Cer transporter (CERT) inhibitor HPA-12, CHC did not change the transport of a fluorescent short chain Cer analog to the Golgi apparatus or the formation of fluorescent and short chain SM from the corresponding Cer. Nevertheless, CHC inhibited the conversion of de novo synthesized Cer to SM. We show that CHC specifically inhibited the CERT-mediated extraction of Cer from the endoplasmic reticulum membranes in vitro. Subsequent biochemical screening of 21 limonoids revealed that some of them, such as 8β-hydroxycarapin-3,8-hemiacetal and gedunin, which exhibits anti-cancer activity, inhibited SM biosynthesis and CERT-mediated extraction of Cer from membranes. Model membrane studies suggest that 8β-hydroxycarapin-3,8-hemiacetal reduced the miscibility of Cer with membrane lipids and thus induced the formation of Cer-rich membrane domains. Our study shows that certain limonoids are novel inhibitors of SM biosynthesis and suggests that some biological activities of these limonoids are related to their effect on the ceramide metabolism.  相似文献   

6.
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a polarized ribbon. Furthermore, trans-Golgi membranes come in close apposition with ER (endoplasmic reticulum) membranes to form ER-trans-Golgi contact sites, which may facilitate transfer of newly synthesized ceramide from the ER to SM (sphingomyelin) synthase at the trans-Golgi via CERT (ceramide transfer protein). CERT interacts with both ER and Golgi membranes, and together with Golgi morphology contributes to efficient SM synthesis. In the present study, we show that Golgi disassembly during pro-apoptotic stress induced by TNFα (tumour necrosis factor α) and anisomycin results in decreased levels of CERT at the Golgi region. This is accompanied by a caspase-dependent loss of full-length CERT and reduction in de novo SM synthesis. In vitro, CERT is cleaved by caspases 2, 3 and 9. Truncated versions of CERT corresponding to fragments generated by caspase 2 cleavage at Asp213 were mislocalized and did not promote efficient de novo SM synthesis. Thus it is likely that during cellular stress, disassembly of Golgi structure together with inactivation of CERT by caspases causes a reduction in ceramide trafficking and SM synthesis, and could contribute to the cellular response to pro-apoptotic stress.  相似文献   

7.
The COG (conserved oligomeric Golgi complex) is a Golgi-associated tethering complex involved in retrograde trafficking of multiple Golgi enzymes. COG deficiencies lead to misorganization of the Golgi, defective trafficking of glycosylation enzymes, and abnormal N-, O- and ceramide-linked oligosaccharides. Here, we show that in Cog2 null mutant ldlC cells, the content of sphingomyelin (SM) is reduced to ~25% of WT cells. Sphingomyelin synthase (SMS) activity is essentially normal in ldlC cells, but in contrast with the typical Golgi localization in WT cells, in ldlC cells, transfected SMS1 localizes to vesicular structures scattered throughout the cytoplasm, which show almost no signal of co-transfected ceramide transfer protein (CERT). Cog2 transfection restores SM formation and the typical SMS1 Golgi localization phenotype. Adding exogenous N-6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl-4-d-erythro-sphingosine (C(6)-NBD-ceramide) to ldlC cell cultures results in normal SM formation. Endogenous ceramide levels were 3-fold higher in ldlC cells than in WT cells, indicating that Golgi misorganization caused by Cog2 deficiency affects the delivery of ceramide to sites of SM synthesis by SMS1. Considering the importance of SM as a structural component of membranes, this finding is also worth of consideration in relation to a possible contribution to the clinical phenotype of patients suffering congenital disorders of glycosylation type II.  相似文献   

8.
Cholera toxin (CT) enters host cells by binding to ganglioside GM1 in the apical plasma membrane (PM). GM1 carries CT retrograde from the PM to the endoplasmic reticulum (ER), where a portion of the toxin, the A1-chain, retro-translocates to the cytosol, causing disease. Trafficking in this pathway appears to depend on the association of CT–GM1 complexes with sphingomyelin (SM)- and cholesterol-rich membrane microdomains termed lipid rafts. Here, we find that in polarized intestinal epithelia, the conversion of apical membrane SM to ceramide by bacterial sphingomyelinase attenuates CT toxicity, consistent with the lipid raft hypothesis. The effect is reversible, specific to toxin entry via the apical membrane, and recapitulated by the addition of exogenous long-chain ceramides. Conversion of apical membrane SM to ceramide inhibits the efficiency of toxin endocytosis, but retrograde trafficking from the apical PM to the Golgi and ER is not affected. This result suggests that the cause for toxin resistance occurs at steps required for retro-translocation of the CT A1-chain to the cytosol.  相似文献   

9.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

10.
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein-associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT-VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus.  相似文献   

11.
Semi-intact cells, a cell population in which the plasma membrane is perforated to expose intact intracellular organelles (Beckers, C. J. M., Keller, D. S., and Balch, W. E. (1987) Cell 50, 523-534), efficiently reconstitute vesicular trafficking of protein from the endoplasmic reticulum (ER) to the cis Golgi compartment. We now extend these studies to biochemically dissect transport of protein between the ER and the Golgi into a series of sequential intermediate steps involved in the budding and fusion of carrier vesicles. At least two broad categories of transport intermediates can be detected, those that involve early steps in transport and those involved in late, fusion-related events. Early transport steps require the transport of protein through a novel intermediate compartment in which protein accumulates at reduced temperature (15 degrees C). We demonstrate that both entry and exit from this 15 degrees C compartment can be successfully reconstituted in vitro. A late step in delivery of protein to the cis Golgi compartment requires Ca2+ (pCa7) and is coincident with a step which is sensitive to a peptide analog which blocks interaction between the Rab family of small GTP-binding proteins and a downstream effector protein(s) (Plutner, H., Schwaninger, R., Pind, S., and Balch, W. E. (1990) EMBO J. 9, 2375-2384). The combined results suggest that a single round of vesicular transport between the ER and the Golgi involves a rapid transit through N-ethylmaleimide-sensitive, guanosine 5'-(3-O-thio)triphosphate-sensitive, ATP- and cytosol-dependent step(s) involved in vesicle formation or transport to a novel intermediate compartment, followed by a regulated fusion event triggered in the presence of Ca2+ and functional components interacting with member(s) of the Rab gene family.  相似文献   

12.
Synthesis and sorting of lipids are essential events for membrane biogenesis and its homeostasis. Ceramide is synthesised at the endoplasmic reticulum (ER), and translocated to the Golgi compartment for conversion to sphingomyelin (SM). We have recently identified a key factor (named CERT) for ceramide trafficking. In this short review, I summarise recent advances in molecular mechanisms of intracellular transport of ceramide, focusing on our genetic and biochemical approaches to this issue.  相似文献   

13.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

14.
De novo biosynthesis of sphingolipids begins in the endoplasmic reticulum (ER) and continues in the Golgi apparatus and plasma membrane. A crucial step in sphingolipid biosynthesis is the transport of ceramide by vesicular and non-vesicular mechanisms from its site of synthesis in the ER to the Golgi apparatus. The recent discovery of the ceramide transport protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin (SM) synthesis. In addition to a ceramide-binding START domain, CERT has FFAT (referring to two phenylalanines [FF] in an acidic tract) and pleckstrin homology (PH) domains that recognize the ER integral membrane protein VAMP-associated protein (VAP) and Golgi-associated PtdIns 4-phosphate, respectively. Mechanisms for vectorial transport involving dual-organellar targeting and sites of deposition of ceramide in the Golgi apparatus are proposed. Similar Golgi-ER targeting motifs are also present in the oxysterol-binding protein (OSBP), which regulates ceramide transport and SM synthesis in an oxysterol-dependent manner. Consequently, this emerges as a potential mechanism for integration of sphingolipid and cholesterol metabolism. The identification of organellar targeting motifs in other related lipid-binding/transport proteins indicate that concepts learned from the study of ceramide transport can be applied to other lipid transport processes.  相似文献   

15.
Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in UVB-irradiated keratinocytes, we investigated whether alteration(s) in the function of ceramide transport protein (or CERT) required for sphingomyelin synthesis occur(s) in UVB-irradiated cells. Fluorescently labeled N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-ceramide) relocation to the Golgi was diminished after irradiation, consistent with decreased CERT function, whereas the CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (1R,3R isomer) (HPA-12) produced an equivalent effect. UVB irradiation also induced the rapid formation of a stable CERT homotrimer complex in keratinocytes as determined by Western immunoblot and mass spectrometry analyses, a finding replicated in HeLa, HEK293T, and HaCaT cells and in murine epidermis. Ceramide binding activity was decreased in recombinant CERT proteins containing the UVB-induced homotrimer. The middle region domain of the CERT protein was required for the homotrimer formation, whereas neither the pleckstrin homology (Golgi-binding) nor the START (ceramide-binding) domains were involved. Finally like UVB-treated keratinocytes, HPA-12 blockade of CERT function increased keratinocyte apoptosis, decreased sphingomyelin synthesis, and led to accumulation of ceramide. Thus, UVB-induced CERT homotrimer formation accounts, at least in part, for apoptosis and failed up-regulation of sphingomyelin synthesis following UVB irradiation, revealing that inactive CERT can attenuate a key metabolic protective mechanism against ceramide-induced apoptosis in keratinocytes.  相似文献   

16.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT has been identified as a key factor for the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains including (i) a START domain capable of catalyzing inter-membrane transfer of ceramide, (ii) a pleckstrin homology domain, which serves to target the Golgi apparatus by recognizing phosphatidylinositol 4-monophosphate, and (iii) a short peptide motif named FFAT motif which interacts with the ER-resident membrane protein VAP. CERT is preferentially distributed to the Golgi region in cells, and Golgi-targeted CERT appears to retain the activity to interact with VAP. On the basis of these results, it has been proposed that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that a particularly efficient cycle of CERT movement for trafficking of ceramide may proceed at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

17.
Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.  相似文献   

18.
The recently identified ceramide transfer protein, CERT, is responsible for the bulk of ceramide transport from the endoplasmic reticulum (ER) to the Golgi. CERT has a C-terminal START domain for ceramide binding and an N-terminal pleck-strin homology domain that binds phosphatidylinositol 4-phosphate suggesting that phosphatidylinositol (PI) 4-kinases are involved in the regulation of CERT-mediated ceramide transport. In the present study fluorescent analogues were used to follow the ER to Golgi transport of ceramide to determine which of the four mammalian PI 4-kinases are involved in this process. Overexpression of pleckstrin homology domains that bind phosphatidylinositol 4-phosphate strongly inhibited the transport of C5-BODIPY-ceramide to the Golgi. A newly identified PI 3-kinase inhibitor, PIK93 that selectively inhibits the type III PI 4-kinase beta enzyme, and small interfering RNA-mediated down-regulation of the individual PI 4-kinase enzymes, revealed that PI 4-kinase beta has a dominant role in ceramide transport between the ER and Golgi. Accordingly, inhibition of PI 4-kinase III beta either by wortmannin or PIK93 inhibited the conversion of [3H]serine-labeled endogenous ceramide to sphingomyelin. Therefore, PI 4-kinase beta is a key enzyme in the control of spingomyelin synthesis by controlling the flow of ceramide from the ER to the Golgi compartment.  相似文献   

19.
Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.  相似文献   

20.
Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to β-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of β-cells exposed to glucolipotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号