首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical and geophysical processes. Although recognizing the many gaps in our knowledge of prebiotic chemistry and the early planetary setting in which life emerged, we will assume for the purpose of this review that the requisite chemical building blocks were available, in appropriate environmental settings. This assumption allows us to focus on the various spontaneous and catalyzed assembly processes that could have led to the formation of primitive membranes and early genetic polymers, their coassembly into membrane-encapsulated nucleic acids, and the chemical and physical processes that allowed for their replication. We will discuss recent progress toward the construction of laboratory models of a protocell (Fig. 1), evaluate the remaining steps that must be achieved before a complete protocell model can be constructed, and consider the prospects for the observation of spontaneous Darwinian evolution in laboratory protocells. Although such laboratory studies may not reflect the specific pathways that led to the origin of life on Earth, they are proving to be invaluable in uncovering surprising and unanticipated physical processes that help us to reconstruct plausible pathways and scenarios for the origin of life.Open in a separate windowFigure 1.A simple protocell model based on a replicating vesicle for compartmentalization, and a replicating genome to encode heritable information. A complex environment provides lipids, nucleotides capable of equilibrating across the membrane bilayer, and sources of energy (left), which leads to subsequent replication of the genetic material and growth of the protocell (middle), and finally protocellular division through physical and chemical processes (right). (Reproduced from Mansy et al. 2008 and reprinted with permission from Nature Publishing ©2008.)The term protocell has been used loosely to refer to primitive cells or to the first cells. Here we will use the term protocell to refer specifically to cell-like structures that are spatially delimited by a growing membrane boundary, and that contain replicating genetic information. A protocell differs from a true cell in that the evolution of genomically encoded advantageous functions has not yet occurred. With a genetic material such as RNA (or perhaps one of many other heteropolymers that could provide both heredity and function) and an appropriate environment, the continued replication of a population of protocells will lead inevitably to the spontaneous emergence of new coded functions by the classical mechanism of evolution through variation and natural selection. Once such genomically encoded and therefore heritable functions have evolved, we would consider the system to be a complete, living biological cell, albeit one much simpler than any modern cell (Szostak et al. 2001).  相似文献   

2.
H Schwegler  K Tarumi 《Bio Systems》1986,19(4):307-315
The concepts of self-generation, autonomous boundary and self-maintenance are explained briefly. The "protocell" is presented as a model of self-maintenance which is based on simple physical mechanisms of diffusion and reaction. The time evolution of the surface of the protocell is taken into account explicitly in the form of a Stefan condition giving rise to a non-linear feedback of the surface motion to the reaction and diffusion processes inside the protocell. The spatio-temporal dynamics are investigated, particularly in the neighbourhood of the stationary states, showing a self-maintaining behaviour under a certain range of nutritional conditions. Under another set of conditions we find an instability leading to a division process so that the population of protocells becomes self-maintaining instead of the single individual. The presented formulation of the protocell model is crucially improved compared with a previous version which required boundary conditions at infinity. The previous version was not strictly self-maintaining since dynamics outside the cell were essential for its behaviour.  相似文献   

3.
The paper deals with molecular self-organization leading to formation of a protocell. Plausible steps towards a protocell include: polymerization of peptides and oligonucleotides on mineral surfaces; coevolution of peptides and oligonucleotides with formation of collectively autocatalytic sets; self-organization of short peptides into vesicles; entrapment of the peptide/oligonucleotide systems in mixed peptide and simple amphiphile membranes; and formation of functioning protocells with metabolism and cell division. The established propensity of short peptides to self-ordering and to formation of vesicles makes this sequence plausible. We further suggest that evolution of a protocell produced cellular ancestors of viruses as well as ancestors of cellular organisms.  相似文献   

4.
To develop a comprehensive cells-first approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.  相似文献   

5.
We have developed an imitation model of the appearance of regulation of physiological functions of protocell at the initial stages of evolution of living system. It is based on suggestion of the appearance of signal function in spontaneously formed products of partial hydrolysis of the protocell polypeptides, based on which there appear the regulatory molecules--quanta of regulation. For construction of the model, the mathematical apparatus of final automats and of genetic algorithm is used. The model has demonstrated the positive role of involvement of regulatory peptides in the system of regulation of protocell functions to provide its viability under the changing envelopment conditions.  相似文献   

6.
We have developed an imitation model of the appearance of regulation of physiological functions of protocell at initial stages of evolution of living system. It is based on suggestion of the appearance of signal function in spontaneously formed products of partial hydrolysis of the protocell polypeptides, based on which there appear the regulatory molecules—quanta of regulation. For construction of the model, the mathematical apparatus of final automats and of genetic algorithm is used. The model has demonstrated the positive role of involvement of regulatory peptides in the system of regulation of protocell functions to provide its viability under the changing envelopment conditions.  相似文献   

7.
The imposing progress in understanding contemporary life forms on Earth and in manipulating them has not been matched by a comparable progress in understanding the origins of life. This paper argues that a crucial problem of unzipping of the double helix molecule of nucleic acid during its replication has been underrated, if not plainly overlooked, in the theories of life's origin and evolution. A model is presented of how evolution may have solved the problem in its early phase. Similar to several previous models, the model envisages the existence of a protocell, in which osmotic disbalance is being created by accumulation of synthetic products resulting in expansion and division of the protocell. Novel in the model is the presence in the protocell of a double-stranded nucleic acid, with each of its two strands being affixed by its 3'-terminus to the opposite sides of the membrane of a protocell. In the course of the protocell expansion, osmotic force is utilized to pull the two strands longitudinally in opposite directions, unzipping the helix and partitioning the strands between the two daughter protocells. The model is also being used as a background for arguments of why life need operate in cycles. Many formal models of life's origin and evolution have not taken into account the fact that logical possibility does not equal thermodynamic feasibility. A system of self-replication has to consist of both replicators and replicants.  相似文献   

8.
A model is proposed for the selective accumulation of amino acids, sugars, nucleotides, cations and protons from the primordial oceans into a lipid vesicle type of protocell. The model is built on facilitated diffusion using simple, primordial, lipid-soluble carriers. The advantages a lipid vesicle protocell would have had over the other potential types of protocells are discussed.  相似文献   

9.
The source, preparation, and properties of phase-separated systems such as lipid layers, coacervate droplets, sulphobes, and proteinoid microspheres are reviewed. These microsystems are of interest as partial models for the cell and as partial or total models for the protocell. Conceptual benefits from study of such models are: clues to experiments on origins, insights into principles of action and, in some instances, presumable models of the origin of the protocell. The benefits to evolution of organized chemical units are many, and can in part be analyzed. Ease of formation suggests that such units would have arisen early in primordial organic evolution. Integration of these various concepts and the results of consequent experiments have contributed to the developing theory of the origins of primordial and of contemporary life.Invited paper. Presented at the International Seminar Origin of Life, 2–7 August 1974, Moscow, U.S.S.R.  相似文献   

10.
A physico-chemical model of a self-maintaining unity or protocell is constructed on the basis of reaction and diffusion processes. The surface motion of the protocell is taken into account explicitly by a so-called Stefan condition, which leads to a nonlinear feedback to the reaction and diffusion processes. The spatio-temporal dynamics in the neighbourhood of the steady states is investigated in the framework of linear stability analysis with the use of an expansion in terms of spherical harmonicsY l m . It is shown that modes with l2 become successively unstable with increasing nutrient supply. The leading instability with l=2 initiates a process of the nonlinear dynamics which is interpreted as the onset of division. A stabilizing effect of surface tension is also discussed.  相似文献   

11.
A stubborn question in early molecular evolution is how to sustain the minimum informational length required for the basic features of life with a putative low-copying fidelity RNA polymerase ribozyme. Proposals to circumvent the information crisis have primarily focused on networks of cooperative molecules or compartmentalization of noncooperative unlinked templates, but success has been very limited so far. Lehman (2003) has recently suggested that recombination—a frequently ignored player in early evolution—could have been crucial to building up primeval genomes of sizable length. Here we investigate this claim by assuming (without loss of generality) that genes were already enclosed in a compartment (vesicle, protocell). The numerical results show a quite intricate interplay among mutation, recombination, and gene redundancy. Provided that the minimum number of gene copies per protocell was enough for recombination to recreate wild-type templates—but not too high to impose an unbearable burden of mutants—informational content could have increased by at least 25% by keeping the same mutational load as that for a population without recombination. However, the upper bound of informational length would still be far from the minimal life provisions.[Reviewing Editor: Dr. Niles Lehman]  相似文献   

12.
Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.  相似文献   

13.
Domain protolife     
We propose the Thermal Protein First Paradigm (protocell theory) that affirms that first life was cellular. The first cells emerged from molecular (chemical) evolution as protocells (heated amino acids self-order in copolymerization reactions to form thermal proteins which self-organize when in contact with water to form protocells). Metaprotocells are specialized protocells capable of synthesizing ATP (light energy conversion to chemical energy), polypeptides, and polynucleotides. Aggregations of protocells in thermal protein matrices form distinctive morphologies (protocellular networks). Prokaryotic cells emerged from metaprotocells. We classify protocells and metaprotocells as members of the Domain Protolife. We revised the cell theory to include protolife.  相似文献   

14.
Origin of sex   总被引:1,自引:0,他引:1  
The competitive advantage of sex consists in being able to use redundancy to recover lost genetic information while minimizing the cost of redundancy. We show that the major selective forces acting early in evolution lead to RNA protocells in which each protocell contains one genome, since this maximizes the growth rate. However, damages to the RNA which block replication and failure of segregation make it advantageous to fuse periodically with another protocell to restore reproductive ability. This early, simple form of genetic recovery is similar to that occurring in extant segmented single stranded RNA viruses. As duplex DNA became the predominant form of the genetic material, the mechanism of genetic recovery evolved into the more complex process of recombinational repair, found today in a range of species. We thus conclude that sexual reproduction arose early in the evolution of life and has had a continuous evolutionary history. We cite reasons to reject arguments for gaps in the evolutionary sequence of sexual reproduction based on the presumed absence of sex in the cyanobacteria. Concerning the maintenance of the sexual cycle among current organisms, we take care to distinguish between the recombinational and outbreeding aspects of the sexual cycle. We argue that recombination, whether it be in outbreeding organisms, self-fertilizing organisms or automictic parthenogens, is maintained by the advantages of recombinational repair. We also discuss the role of DNA repair in maintaining the outbreeding aspects of the sexual cycle.  相似文献   

15.
《Biophysical journal》2021,120(18):3937-3959
We propose a simple mechanism for the self-replication of protocells. Our main hypothesis is that the amphiphilic molecules composing the membrane bilayer are synthesized inside the protocell through exothermic chemical reactions. The slow increase of the inner temperature forces the hottest molecules to move from the inner leaflet to the outer leaflet of the bilayer. Because of this outward translocation flow, the outer leaflet grows faster than the inner leaflet. This differential growth increases the mean curvature and amplifies any local shrinking of the protocell until it splits in two. The proposed model, based on mere laws of physics, is a step in the study of the origin of life, as well as a clue for a better understanding of cell proliferation in cancer.  相似文献   

16.
The coexistence between different types of templates has been the choice solution to the information crisis of prebiotic evolution, triggered by the finding that a single RNA-like template cannot carry enough information to code for any useful replicase. In principle, confining d distinct templates of length L in a package or protocell, whose survival depends on the coexistence of the templates it holds in, could resolve this crisis provided that d is made sufficiently large. Here we review the prototypical package model of Niesert et al. [1981. Origin of life between Scylla and Charybdis. J. Mol. Evol. 17, 348-353] which guarantees the greatest possible region of viability of the protocell population, and show that this model, and hence the entire package approach, does not resolve the information crisis. In particular, we show that the total information stored in a viable protocell (Ld) tends to a constant value that depends only on the spontaneous error rate per nucleotide of the template replication mechanism. As a result, an increase of d must be followed by a decrease of L, so that the net information gain is null.  相似文献   

17.
Cellular life requires the presence of a set of biochemical mechanisms in order to maintain a predictable process of growth and division. Several attempts have been made towards the building of minimal protocells from a top-down approach, i.e. by using available biomolecules. This type of synthetic approach has so far been only partially successful, and appropriate models of the synthetic protocell cycle might be needed to guide future experiments. In this paper, we present a simple biochemically and physically feasible model of cell replication involving a discrete semi-permeable vesicle with an internal minimal metabolism involving two reactive centers. It is shown that such a system can effectively undergo a whole cell replication cycle. The model can be used as a basic framework to model whole protocell dynamics including more complex sets of reactions. The possible implementation of our design in future synthetic protocells is outlined.  相似文献   

18.
An alternative to creating novel organisms through the traditional “top-down” approach to synthetic biology involves creating them from the “bottom up” by assembling them from non-living components; the products of this approach are called “protocells.” In this paper we describe how bottom-up and top-down synthetic biology differ, review the current state of protocell research and development, and examine the unique ethical, social, and regulatory issues raised by bottom-up synthetic biology. Protocells have not yet been developed, but many expect this to happen within the next five to ten years. Accordingly, we identify six key checkpoints in protocell development at which particular attention should be given to specific ethical, social and regulatory issues concerning bottom-up synthetic biology, and make ten recommendations for responsible protocell science that are tied to the achievement of these checkpoints.  相似文献   

19.
Gánti's chemoton model (Gánti, T., 2002. On the early evolution of biological periodicity. Cell. Biol. Int. 26, 729) is considered as an iconic example of a minimal protocell including three key subsystems: membrane, metabolism and information. The three subsystems are connected through stoichiometrical coupling which ensures the existence of a replication cycle for the chemoton. Our detailed exploration of a version of this model indicates that it displays a wide range of complex dynamics, from regularity to chaos. Here, we report the presence of a very rich set of dynamical patterns potentially displayed by a protocell as described by this implementation of a chemoton-like model. The implications for early cellular evolution and synthesis of artificial cells are discussed.  相似文献   

20.
Ma W  Hu J 《PloS one》2012,7(4):e35454
It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with "micro-resolution" at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a "habitat-shift" into bulk water. Second, the protocell stage started with a substage of "pseudo-protocells", with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent "true-protocell" substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the emergence of single "genes", but before the appearance of a "chromosome" with linked genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号