首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finley KR  Berman J 《Eukaryotic cell》2005,4(10):1697-1711
Candida albicans is an opportunistic fungal pathogen whose virulence is related to its ability to switch between yeast, pseudohyphal, and true-hyphal morphologies. To ask how long-distance nuclear migration occurs in C. albicans hyphae, we identified the fundamental properties of nuclear movements and microtubule dynamics using time-lapse microscopy. In hyphae, nuclei migrate to, and divide across, the presumptive site of septation, which forms 10 to 15 microm distal to the basal cell. The mother nucleus returns to the basal cell, while the daughter nucleus reiterates the process. We used time-lapse microscopy to identify the mechanisms by which C. albicans nuclei move over long distances and are coordinated with hyphal morphology. We followed nuclear migration and spindle dynamics, as well as the time and position of septum specification, defined it as the presumptum, and established a chronology of nuclear, spindle, and morphological events. Analysis of microtubule dynamics revealed that premitotic forward nuclear migration is due to the repetitive sliding of astral microtubules along the cell cortex but that postmitotic forward and reverse nuclear migrations are due primarily to spindle elongation. Free microtubules exhibit cell cycle regulation; they are present during interphase and disappear at the time of spindle assembly. Finally, a growth defect in strains expressing Tub2-green fluorescent protein revealed a connection between hyphal elongation and the nuclear cell cycle that is coordinated by hyphal length and/or volume.  相似文献   

2.
Cellular traction forces, resulting in cell-substrate physical interactions, are generated by actin-myosin complexes and transmitted to the extracellular matrix through focal adhesions. These processes are highly dynamic under physiological conditions and modulate cell migration. To better understand the precise dynamics of cell migration, we measured the spatiotemporal redistribution of cellular traction stresses (force per area) during fibroblast migration at a submicron level and correlated it with nuclear translocation, an indicator of cell migration, on a physiologically relevant extracellular matrix mimic. We found that nuclear translocation occurred in pulses whose magnitude was larger on the low ligand density surfaces than on the high ligand density surfaces. Large nuclear translocations only occurred on low ligand density surfaces when the rear traction stresses completely relocated to a posterior nuclear location, whereas such relocation took much longer time on high ligand density surfaces, probably due to the greater magnitude of traction stresses. Nuclear distortion was also observed as the traction stresses redistributed. Our results suggest that the reinforcement of the traction stresses around the nucleus as well as the relaxation of nuclear deformation are critical steps during fibroblast migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. A traction gradient foreshortening model was proposed to explain how the relocation of rear traction stresses leads to pulsed fibroblast migration.  相似文献   

3.
4.
A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.  相似文献   

5.
The molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis.  相似文献   

6.
The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells, for example monocytes and macrophages. In this work we investigated the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during treatment. Interestingly, aspect ratio peaks after approximately 10?h of exposure to TNF-α, corresponding also to a peak in exerted traction forces. Meanwhile, ECs treated with TNF-α soften, and we associate this with significant increases in estimated cellular volume. In addition, our evaluation of migratory dynamics revealed an inverse correlation between cell aspect ratio and migration speed after TNF-α treatment, suggesting that cell shape may be an important functional regulator of EC migration during an inflammatory response. Finally, we addressed the basic mechanics of how the reorganization of F-actin filaments occurs during TNF-α treatment, and observed a dynamic shift of existing actin filaments. Together, our results suggest a functional link between EC morphology, biomechanics, migration, and cytoskeletal dynamics during an inflammatory response.  相似文献   

7.
The nuclear envelope (NE) of the eukaryotic cell provides an essential barrier that separates the nuclear compartment from the cytoplasm. In addition, the NE is involved in essential functions such as nuclear stability, regulation of gene expression, centrosome separation and nuclear migration and positioning. In metazoa the NE breaks down and re-assembles around the segregated chromatids during each cell division. In this review we discuss the molecular constituents of the Caenorhabditis elegans NE and describe their role in post-mitotic NE re-formation, as well as the usefulness of C. elegans as an in vivo system for analyzing NE dynamics.  相似文献   

8.
The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes.  相似文献   

9.
Cell migration is astoundingly diverse. Molecular signatures, cell-cell interactions, and environmental structures each play their part in shaping cell motion, yielding numerous morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. This universal coupling between speed and persistence (UCSP) was explained by retrograde actin flow from front to back, but it remains unclear how this mechanism generalizes to cells with complex shapes and cells migrating in structured environments, which may not have a well-defined front-to-back orientation. Here, we present an in-depth characterization of an existing cellular Potts model, in which cells polarize dynamically from a combination of local actin dynamics (stimulating protrusions) and global membrane tension along the perimeter (inhibiting protrusions). We first show that the UCSP emerges spontaneously in this model through a cross talk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Importantly, we find that local protrusion dynamics suffice to reproduce the UCSP—even in cases in which no clear global, front-to-back polarity exists. We then harness the spatial nature of the cellular Potts model to show how cell shape dynamics limit both the speed and persistence a cell can reach and how a rigid environment such as the skin can restrict cell motility even further. Our results broaden the range of potential mechanisms underlying the speed-persistence coupling that has emerged as a fundamental property of migrating cells.  相似文献   

10.
Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.  相似文献   

11.
Chromatin dynamics play a major role in regulating genetic processes. Now, accumulating data suggest that chromatin structure may also affect the mechanical properties of the nucleus and cell migration. Global chromatin organization appears to modulate the shape, the size and the stiffness of the nucleus. Directed-cell migration, which often requires nuclear reshaping to allow passage of cells through narrow openings, is dependent not only on changes in cytoskeletal elements but also on global chromatin condensation. Conceivably, during cell migration a physical link between the chromatin and the cytoskeleton facilitates coordinated structural changes in these two components. Thus, in addition to regulating genetic processes, we suggest that alterations in chromatin structure could facilitate cellular reorganizations necessary for efficient migration.  相似文献   

12.
Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization.  相似文献   

13.
14.
Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.  相似文献   

15.
16.
Rod-like bacteria maintain their cylindrical shapes with remarkable precision during growth. However, they are also capable to adapt their shapes to external forces and constraints, for example by growing into narrow or curved confinements. Despite being one of the simplest morphologies, we are still far from a full understanding of how shape is robustly regulated, and how bacteria obtain their near-perfect cylindrical shapes with excellent precision. However, recent experimental and theoretical findings suggest that cell-wall geometry and mechanical stress play important roles in regulating cell shape in rod-like bacteria. We review our current understanding of the cell wall architecture and the growth dynamics, and discuss possible candidates for regulatory cues of shape regulation in the absence or presence of external constraints. Finally, we suggest further future experimental and theoretical directions which may help to shed light on this fundamental problem.  相似文献   

17.
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.  相似文献   

18.
19.
20.
The life cycle of the metazoan nuclear envelope   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号