首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The emerging role of CD40, a tumor necrosis factor (TNF) receptor family member, in immune regulation, disease pathogenesis, and cancer therapy necessitates the analysis of CD40 signal transduction in a wide range of tissue types. In this study we present evidence that the CD40-interacting proteins TRAF2 and TRAF6 play an important physiological role in CD40 signaling in nonhemopoietic cells. Using mutational analysis of the CD40 cytoplasmic tail, we demonstrate that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-kappaB, Jun N-terminal protein kinase (JNK), and p38 axis. In fibroblasts lacking TRAF2 or in carcinoma cells in which TRAF2 has been depleted by RNA interference, the CD40-mediated activation of NF-kappaB and JNK is significantly reduced, and the activation of p38 and Akt is severely impaired. Interestingly, whereas the TRAF6-interacting membrane-proximal domain of CD40 has a minor role in signal transduction, studies utilizing TRAF6 knockout fibroblasts and RNA interference in epithelial cells reveal that the CD40-induced activation of NF-kappaB, JNK, p38, and Akt requires the integrity of TRAF6. Furthermore, we provide evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding to CD40 but also indirectly via its association with TRAF2. These observations provide novel insight into the mechanisms of CD40 signaling and the multiple roles played by TRAF6 in signal transduction.  相似文献   

2.
TRAF2 is a RING finger protein that regulates the cellular response to stress and cytokines by controlling JNK, p38 and NF-kappaB signaling cascades. Here, we demonstrate that TRAF2 ubiquitination is required for TNFalpha-induced activation of JNK but not of p38 or NF-kappaB. Intact RING and zinc finger domains are required for TNFalpha-induced TRAF2 ubiquitination, which is also dependent on Ubc13. TRAF2 ubiquitination coincides with its translocation to the insoluble cellular fraction, resulting in selective activation of JNK. Inhibition of Ubc13 expression by RNAi resulted in inhibition of TNFalpha-induced TRAF2 translocation and impaired activation of JNK but not of IKK or p38. TRAF2 aggregates in the cytoplasm, as seen in Hodgkin-Reed-Sternberg lymphoma cells, resulting in constitutive NF-kappaB activity but failure to activate JNK. These findings demonstrate that the TRAF2 RING is required for Ubc13-dependent ubiquitination, resulting in translocation of TRAF2 to an insoluble fraction and activation of JNK, but not of p38 or NF-kappaB. Altogether, our findings highlight a novel mechanism of TRAF2-dependent activation of diverse signaling cascades that is impaired in Hodgkin-Reed-Sternberg cells.  相似文献   

3.
IL-33 has been shown to induce Th2 responses by signaling through the IL-1 receptor-related protein, ST2L. However, the signal transduction pathways activated by the ST2L have not been characterized. Here, we found that IL-33-induced monocyte chemoattractant protein (MCP)-1, MCP-3 and IL-6 expression was significantly inhibited in TNF receptor-associated Factor 6 (TRAF6)-deficient MEFs. IL-33 rapidly induced the formation of ST2L complex containing IL-1 receptor-associated kinase (IRAK), however, lack of TRAF6 abolished the recruitment of IRAK to ST2L. Consequently, p38, JNK and Nuclear factor-kappaB (NF-kappaB) activation induced by IL-33 was completely inhibited in TRAF6-deficient MEFs. On the other hand, IL-33-induced ERK activation was observed regardless of the presence of TRAF6. The introduction of TRAF6 restored the efficient activation of p38, JNK and NF-kappaB in TRAF6 deficient MEFs, resulting in the induction of MCP-1, MCP-3 and IL-6 expression. Moreover, IL-33 augmented autoubiquitination of TRAF6 and the reconstitution of TRAF6 mutant (C70A) that is defective in its ubiquitin ligase activity failed to restore IL-33-induced p38, JNK and NF-kappaB activation. Thus, these data demonstrate that TRAF6 plays a pivotal role in IL-33 signaling pathway through its ubiquitin ligase activity.  相似文献   

4.
The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.  相似文献   

5.
6.
7.
8.
Tumor necrosis factor (TNF) superfamily receptors typically induce both NF-kappaB and JNK activation by recruiting the TRAF2 signal transduction protein to their cytoplasmic domain. The type 2 TNF receptor (TNFR2), however, is a poor activator of these signaling pathways despite its high TRAF2 binding capability. This apparent paradox is resolved here by the demonstration that TNFR2 carries a novel carboxyl-terminal TRAF2-binding site (T2bs-C) that prevents the delivery of activation signals from its conventional TRAF2-binding site (T2bs-N). T2bs-C does not conform to canonical TRAF2 binding motifs and appears to bind TRAF2 indirectly via an as yet unidentified intermediary. Specific inactivation of T2bs-N by site-directed mutagenesis eliminated most of the TRAF2 recruited to the TNFR2 cytoplasmic domain but had no effect on ligand-dependent activation of the NF-kappaB or JNK pathways. By contrast, inactivation of T2bs-C had little effect on the amount of TRAF2 recruited but greatly enhanced ligand-dependent NF-kappaB and JNK activation. In wild-type TNFR2 therefore, T2bs-C acts in a dominant fashion to attenuate signaling by the intrinsically more active T2bs-N but not by preventing TRAF2 recruitment. This unique uncoupling of TRAF2 recruitment and signaling at T2bs-N may be important in the modulation by TNFR2 of signaling through coexpressed TNFR1.  相似文献   

9.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

10.
11.
12.
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that has been shown to induce angiogenesis, apoptosis in tumor cells, and NF-kappaB activation through binding to its receptor, fibroblast growth factor-inducible 14. We have identified TWEAK as an inducer of constitutive NF-kappaB activation by expression cloning, and we report here sequential regulation by TWEAK of two separate signaling cascades for NF-kappaB activation, the NF-kappaB essential modulator-dependent and -independent signaling pathways. Upon TWEAK stimulation, IkappaBalpha is rapidly phosphorylated, generating NF-kappaB DNA-binding complexes containing p50 and RelA in a manner dependent on the canonical IkappaB kinase complex. Unlike TNF-alpha, TWEAK stimulation results in prolonged NF-kappaB activation with a transition of the DNA-binding NF-kappaB components from RelA- to RelB-containing complexes by 8 h, and the latter remained active in binding at least until 24 h post-stimulation. This long lasting activation is accompanied by the proteasome-mediated processing of NF-kappaB2/p100, which does not depend on the NF-kappaB essential modulator but requires IkappaB kinase 1 and functional NF-kappaB-inducing kinase activity. Finally, we show that fibroblast growth factor-inducible 14 with a mutation at its TNF receptor-associated factor (TRAF)-binding site cannot activate NF-kappaB and that TWEAK fails to induce the p100 processing and IkappaBalpha phosphorylation in cells deficient for TRAF2 and TRAF5. Our results thus identify TWEAK as a novel physiological regulator of the non-canonical pathway for NF-kappaB activation.  相似文献   

13.
Downstream regulator TANK binds to the CD40 recognition site on TRAF3   总被引:5,自引:0,他引:5  
TRAFs (tumor necrosis factor receptor [TNFR]-associated factors) bind to the cytoplasmic portion of liganded TNFRs and stimulate activation of NF-kappaB or JNK pathways. A modulator of TRAF signaling, TANK, serves as either an enhancer or an inhibitor of TRAF-mediated signaling pathways. The crystal structure of a region of TANK bound to TRAF3 has been determined and compared to a similar CD40/TRAF3 complex. TANK and CD40 bind to the same crevice on TRAF3. The recognition motif PxQxT is presented in a boomerang-like structure in TANK that is markedly different from the hairpin loop that forms in CD40 upon binding to TRAF3. Critical TANK contact residues were confirmed by mutagenesis to be required for binding to TRAF3 or TRAF2. Binding affinity, measured by isothermal titration calorimetry and competition assays, demonstrated that TANK competes with CD40 for the TRAF binding site.  相似文献   

14.
We have previously shown that CD40 causes strong activation of the c-Jun N-terminal kinase (JNK), the p38 mitogen-activated protein kinases (MAPK) and MAPKAP kinase-2, a downstream target of p38 MAPK. To identify signaling motifs in the CD40 cytoplasmic domain that are responsible for activation of these kinases, we have created a set of 11 chimeric receptors consisting of the extracellular and transmembrane domains of CD8 fused to portions of the murine CD40 cytoplasmic domain. These chimeric receptors were expressed in WEHI-231 B lymphoma cells. We found that amino acids 35-45 of the CD40 cytoplasmic domain constitute an independent signaling motif that is sufficient for activation of the JNK and p38 MAPK pathways, as well as for induction of I kappa B alpha phosphorylation and degradation. Amino acids 35-45 were also sufficient to protect WEHI-231 cells from anti-IgM-induced growth arrest. This is the same region of CD40 required for binding the TNF receptor-associated factor-2 (TRAF2), TRAF3, and TRAF5 adapter proteins. These data support the idea that one or more of these TRAF proteins couple CD40 to the kinase cascades that activate NF-kappa B, JNK, and p38 MAPK.  相似文献   

15.
Considering the potential role of interleukin-8 (IL-8) in inflammation, angiogenesis, tumorigenesis, and metastasis, we investigated the molecular mechanism involved in IL-8-mediated signaling. In this report we provide evidence that like TNF, an inducer of NF-kappaB and also a NF-kappaB-dependent gene product, IL-8 induces NF-kappaB in a unique pathway. IL-8 induces NF-kappaB activation in a dose-dependent manner in different cell types as detected by a DNA-protein binding assay. IL-8 induces NF-kappaB-dependent reporter gene expression as well as ICAM-1, VCAM-1, and Cox-2 expression. IL-8 also induces IkappaBalpha phosphorylation followed by degradation and p65 translocation. IL-8 induces c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) in a dose- and time-dependent manner. IL-8-induced NF-kappaB activation is for the most part unaltered when cells are transfected with dominant-negative TRADD, FADD, or TRAF2, but is inhibited with dominant-negative TRAF6-, NIK-, IKK-, or IkappaBalpha-transfected cells. The data suggest that IL-8-induced NF-kappaB activation proceeds through a TRAF2-independent but TRAF6-dependent pathway, followed by recruitment of IRAK and activation of IKK. IL-8-induced NF-kappaB activation is not observed in a cell-permeable peptide that has TRAF6 binding motif-treated cells or IRAK-deficient cells. IL-8-induced NF-kappaB activation proceeds mostly through interaction with TRAF6 and partially through the Rho-GTPase pathways. This is the first report that IL-8 induces NF-kappaB in a distinct pathway, and activation of NF-kappaB and its dependent genes may be one of the pathways of IL-8-induced inflammation and angiogenesis.  相似文献   

16.
Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling   总被引:5,自引:0,他引:5  
IL-25 (IL-17E) induces IL-4, IL-5, and IL-13 production from an unidentified non-T/non-B cell population and subsequently induces Th2-type immune responses such as IgE production and eosinophilic airway inflammation. IL-25R is a single transmembrane protein with homology to IL-17R, but the IL-25R signaling pathways have not been fully understood. In this study, we investigated the signaling pathway under IL-25R, especially the possible involvement of TNFR-associated factor (TRAF)6 in this pathway. We found that IL-25R cross-linking induced NF-kappaB activation as well as ERK, JNK, and p38 activation. We also found that IL-25R-mediated NF-kappaB activation was inhibited by the expression of dominant negative TRAF6 but not of dominant negative TRAF2. Furthermore, IL-25R-mediated NF-kappaB activation, but not MAPK activation, was diminished in TRAF6-deficient murine embryonic fibroblast. In addition, coimmunoprecipitation assay revealed that TRAF6, but not TRAF2, associated with IL-25R even in the absence of ligand binding. Finally, we found that IL-25R-mediated gene expression of IL-6, TGF-beta, G-CSF, and thymus and activation-regulated chemokine was diminished in TRAF6-deficient murine embryonic fibroblast. Taken together, these results indicate that TRAF6 plays a critical role in IL-25R-mediated NF-kappaB activation and gene expression.  相似文献   

17.
Various members of the tumor necrosis factor (TNF) receptor superfamily activate nuclear factor kappaB (NF-kappaB) and the c-Jun N-terminal kinase (JNK) pathways through their interaction with TNF receptor-associated factors (TRAFs) and NF-kappaB-inducing kinase (NIK). We have previously shown that the cytoplasmic domain of receptor activator of NF-kappaB (RANK) interacts with TRAF2, TRAF5, and TRAF6 and that its overexpression activates NF-kappaB and JNK pathways. Through a detailed mutational analysis of the cytoplasmic domain of RANK, we demonstrate that TRAF2 and TRAF5 bind to consensus TRAF binding motifs located in the C terminus at positions 565-568 and 606-611, respectively. In contrast, TRAF6 interacts with a novel motif located between residues 340 and 358 of RANK. Furthermore, transfection experiments with RANK and its deletion mutants in human embryonic 293 cells revealed that the TRAF6-binding region (340-358), but not the TRAF2 or TRAF5-binding region, is necessary and sufficient for RANK-induced NF-kappaB activation. Moreover, a kinase mutant of NIK (NIK-KM) inhibited RANK-induced NF-kappaB activation. However, RANK-mediated JNK activation required a distal portion (427-603) of RANK containing the TRAF2-binding domain. Thus, our results indicate that RANK interacts with various TRAFs through distinct motifs and activates NF-kappaB via a novel TRAF6 interaction motif, which then activates NIK, thus leading to NF-kappaB activation, whereas RANK most likely activates JNK through a TRAF2-interacting region in RANK.  相似文献   

18.
19.
20.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-kappaB and c-Jun N-terminal kinase (JNK), which is essential for LMP1 oncogenic activity. Genetic analysis has revealed that tumor necrosis factor receptor-associated factor 6 (TRAF6) is an indispensable intermediate of LMP1 signaling leading to activation of both NF-kappaB and JNK. However, the mechanism by which LMP1 engages TRAF6 for activation of NF-kappaB and JNK is not well understood. Here we demonstrate that TAK1 mitogen-activated protein kinase kinase kinase and TAK1-binding protein 2 (TAB2), together with TRAF6, are recruited to LMP1 through its N-terminal transmembrane region. The C-terminal cytoplasmic region of LMP1 facilitates the assembly of this complex and enhances activation of JNK. In contrast, IkappaB kinase gamma is recruited through the C-terminal cytoplasmic region and this is essential for activation of NF-kappaB. Furthermore, we found that ablation of TAK1 resulted in the loss of LMP1-induced activation of JNK but not of NF-kappaB. These results suggest that an LMP1-associated complex containing TRAF6, TAB2, and TAK1 plays an essential role in the activation of JNK. However, TAK1 is not an exclusive intermediate for NF-kappaB activation in LMP1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号