首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Thoday  J. M.  Lea  D. E. 《Journal of genetics》1942,43(1-2):189-210
Journal of Genetics - 1. Neutrons produce qualitatively the same types of chromosome aberrations as X-rays, but more of all types of aberration are produced, per ionization, by neutrons. 2. The...  相似文献   

3.
Genetic effects of radiations   总被引:2,自引:0,他引:2  
  相似文献   

4.
The study of prokaryotic chromosome segregation has focused primarily on bacteria with single circular chromosomes. Little is known about segregation in bacteria with multipartite genomes. The human diarrhoeal pathogen Vibrio cholerae has two circular chromosomes of unequal sizes. Using static and time-lapse fluorescence microscopy, we visualized the localization and segregation of the origins of replication of the V. cholerae chromosomes. In all stages of the cell cycle, the two origins localized to distinct subcellular locations. In newborn cells, the origin of chromosome I (oriCIvc) was located near the cell pole while the origin of chromosome II (oriCIIvc) was at the cell centre. Segregation of oriCIvc occurred asymmetrically from a polar position, with one duplicated origin traversing the length of the cell towards the opposite pole and the other remaining relatively fixed. In contrast, oriCIIvc segregated later in the cell cycle than oriCIvc and the two duplicated oriCIIvc regions repositioned to the new cell centres. DAPI staining of the nucleoid demonstrated that both origin regions were localized to the edge of the visible nucleoid and that oriCIvc foci were often associated with specific nucleoid substructures. The differences in localization and timing of segregation of oriCIvc and oriCIIvc suggest that distinct mechanisms govern the segregation of the two V. cholerae chromosomes.  相似文献   

5.
Two new studies show that Aurora B kinase corrects improperly attached chromosomes by recruiting molecules necessary for eliminating the bad attachments and by regulating the turnover of the kinetochore fiber.  相似文献   

6.
7.
J. Puro  S. Nokkala 《Chromosoma》1977,63(3):273-286
A new technique was developed for a light microscopic analysis of meiosis in Drosophila oocytes. — When the nuclear envelope breaks down the bivalents, till then compressed into a karyosome, separate in early prometaphase. The homologues remain associated by chiasmata except for the fourth chromosomes which are no longer associated. Non-homologous chromosomes regularly segregating from each other in genetic experiments are also unconnected after karyosome disintegration but during metaphase I the fourth chromosomes and the heterologous pairs coorient on the same arc of the spindle and move precociously towards opposite poles. Nondisjunction and other irregularities are not infrequent in oocytes having an uneven number of achiasmatic elements. The fourth chromosomes and the Xs or the large autosomes, when lacking chiasmata, may be involved in non-homologous segregation. In c3G homozygotes all chromosomes appear as univalents in prometaphase. Segregation is variable but the observations suggest the polar distribution of equal numbers of chromosomes in variable combinations irrespective of the size. — Coorientation of univalents may be accounted for if the centromeres, whether homologous or non-homologous, are associated in pairs during early meiotic prophase, and that in the karyosome these pairing relationships are preserved until spindle organization at the onset of prometaphase.  相似文献   

8.
H. U. Lütolf 《Genetica》1972,43(3):431-442
Analysis of crossos between genetically marked stocks of Drosophila melanogaster showed, that the compound-3 chromosomes C(3L)RM and C(3R)RM segregate preterentially in female meiosis, and the following two types of eggs are formed predominantly: C(3L)RM; 0 and 0; C(3R)RM. In male meiosis segregation is almost random and four types of sperm are formed: 1. C(3L)RM; C(3R)RM, 2. 0; 0, 3. C(3L)RM; 0, 4. 0; C(3R)RM. The frequencies of these sperm types vary with the genotypes tested. In the stock C(3L)RM, st; C(3R)RM, p p, males produce 76.8% type 1 and 2, and 23.2% type 3 and 4; males of the stock C(3L)RM, ri; C(3R)RM, sr form 63.2% type 1 and 2, and 36.8% type 3 and 4.The segregational behaviour of compound-3 chromosomes found in female meiosis is expected according to the distributive pairing hypothesis. In the male however, where there is no distributive pairing, the stock-specific segregation of compound-3 chromosomes may be due to the presence of small homologous chromosome segments near the centromere which influence chromosome distribution.  相似文献   

9.
Additional or B chromosomes not belonging to the regular karyotype of a species are found in many animal and plant groups. They form a highly heterogeneous group with respect to their morphology and behaviour both in mitosis and meiosis. Achiasmatic mechanisms that ensure the segregation of a B chromosome from another B chromosome or from an A chromosome are reviewed. An achiasmatic mechanism characterized by the "distance pairing" of segregating univalents at metaphase I was found to be responsible for the preferential segregation of B chromosome univalents in Hemerobius marginatus L. (Neuroptera), and a mechanism characterized by the "touch and go pairing" of segregating univalents was responsible for the highly regular segregation of a B chromosome and the X chromosome in Rhinocola aceris (L.) (Psylloidea, Homoptera). The latter mechanism resulted in the integration of a B chromosome to the A chromosome set as a Y chromosome in a psyllid species Cacopsylla peregrina (Frst.). Furthermore, B chromosomes can disturb the regular segregation of the achiasmatic X and Y chromosomes resulting in the formation of X0/XY polymorphism in a population, which might precede the loss of the Y chromosome. The absence of observations on accurately functioning achiasmatic segregation mechanisms in grasshoppers (Orthoptera) was attributed to the X and B chromosomes, which re-orient one or several times during metaphase I. Apparently, these re-orientations mask any achiasmatic segregation mechanism that might operate during meiotic prophase in these insects.  相似文献   

10.
11.
Recent studies provide evidence that bacterial chromosomes are replicated by an enzyme factory, the replisome, located at a fixed position at the center of the cell; the fixed replisome could be a major factor in determining chromosome order in the cell, and may provide the force that drives chromosome segregation.  相似文献   

12.
Interspecific hybrids and backcrossed organisms generally suffer from reduced viability and/or fertility. To identify and genetically map these defects, we introgressed regions of the Drosophila sechellia genome into the D. simulans genome. A female-biased sex ratio was observed in 24 of the 221 recombinant inbred lines, and subsequent tests attributed the skew to failure of Y-bearing sperm to fertilize the eggs. Apparently these introgressed lines fail to suppress a normally silent meiotic drive system. Using molecular markers we mapped two regions of the Drosophila genome that appear to exhibit differences between D. simulans and D. sechellia in their regulation of sex chromosome segregation distortion. The data indicate that the sex ratio phenotype results from an epistatic interaction between at least two factors. We discuss whether this observation is relevant to the meiotic drive theory of hybrid male sterility.  相似文献   

13.
14.
15.
16.
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Unequal segregation of parental chromosomes in embryonic stem cell hybrids   总被引:4,自引:0,他引:4  
Chromosome segregation was studied in 14 intra- and 20 inter-specific hybrid clones generated by fusion of Mus musculus embryonic stem (ES) cells with fibroblasts or splenocytes of DD/c mice or Mus caroli. As a control for in vitro evolution of tetraploid karyotype we used a set of hybrid clones obtained by fusion of ES cells (D3) with ES cells (TgTP6.3). Identification of the parental chromosomes in the clones was performed by microsatellite analysis and in situ hybridization with labeled species-specific probes. Both analyses have revealed three types of clones: (i) stable tetraploid, observed only for ES x ES cell hybrids; (ii) bilateral loss of chromosomes of both ES and somatic partners; (iii) unilateral segregation of chromosomes of the somatic partner. Observed unilateral segregation was extensive in ES-splenocyte cell hybrids, but lower in ES-fibroblast hybrid clones. Developmental state of the somatic partner is presumably responsible for directional chromosome loss. Nonrandom segregation implies that initial differences in the parental homologous chromosomes were not immediately equalized implying at least transient persistence of the differentiated epigenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号