首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,4-Dicyanodibenzodioxins bearing carboxy methyl ester groups were synthesized using our established one-step SNAr coupling reaction between ortho- and meta-ester substituted catechols and perfluorinated terephthalonitrile. These are the first examples of 1,4-dicyanodibenzodioxins substituted at both the benzene moieties. Optical spectra were similar to the earlier examples reported, with a marginal blue shift for the ester dibenzodioxins. Theoretical analysis of the molecular orbitals reveals modest destabilization of the frontier molecular orbitals of one carboxy methyl ester isomer over the other and overall higher HOMO-LUMO gap for both isomers when compared to the earlier published 1,4-dicyanodibenzodioxins. In vitro cytotoxicity against human cervical cancer HeLa cell line was evaluated for these two compounds and all other previously published dibenzodioxins from our laboratory (1,4-dicyano, 1,2-dicyano and 2,3-dicyano variants). A number of derivatives showed anti-tumor activity in μM ranges and also exhibited no cytotoxicity against normal HEK 293 cell line. Mechanistic investigation of cell death pathways indicated high levels of reactive oxygen species (ROS) in the dibenzodioxin treated tumor cell lines along with cellular nuclear fragmentation, both of which are markers of the apoptotic cell death pathway.  相似文献   

2.
An efficient total synthesis of (R) and (S)-3-methyl 5-pentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate in high optical purities is reported. The useful step is the resolution of racemic 2, 6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid by using commercially available Cinchona alkaloids cinchonidine and quinidine as the resolving agents. Under the optimum conditions, the optical purities for R- and S-enantiomers are extremely high (ee >99.5%). The further dihydropyridine receptor binding activity assay shows that the S-enantiomer is more potent than R-enantiomer both in rat cardiac (approximately 19 times) and cerebral cortex membrane (12 times).  相似文献   

3.
The gene (1272-bp) encoding a β-1,4-mannanase from a gut bacterium of Eisenia fetida, Cellulosimicrobium sp. strain HY-13 was cloned and expressed in Escherichia coli. The recombinant β-1,4-mannanase (rManH) was approximately 44.0 kDa and has a catalytic GH5 domain that is 65% identical to that of the Micromonospora sp. β-1,4-mannosidase. The enzyme exhibited the highest catalytic activity toward mannans at 50 °C and pH 6.0. rManH displayed a high specific activity of 14,711 and 8498 IU mg−1 towards ivory nut mannan and locust bean gum, respectively; however it could not degrade the structurally unrelated polysaccharides, mannobiose, or p-nitrophenyl sugar derivatives. rManH was strongly bound to ivory nut mannan, Avicel, chitosan, and chitin but did not attach to curdlan, insoluble oat spelt xylan, lignin, or poly(3-hydroxybutyrate). The superior biocatalytic properties of rManH suggest that the enzyme can be exploited as an effective additive in the animal feed industry.  相似文献   

4.
The specificity of 1,3-1,4-β-glucanase from Synechocystis PCC6803 (SsGlc) was investigated using novel substrates 1,3-1,4-β-glucosyl oligosaccharides, in which 1,3- and 1,4-linkages are located in various arrangements. After the enzymatic reaction, the reaction products were separated and determined by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As a result, SsGlc was found to hydrolyze the pentasaccharides, which possess three contiguous 1,4-β-glycosidic linkages (cellotetraose sequence) adjacent to 1,3-β-linkage, but none of the other oligosaccharides were hydrolyzed. To further analyze the specificity, kinetic measurements were performed using polymeric substrates and 4-methylumbelliferyl derivatives of laminaribiose and cellobiose (1,3-β-(Glc)2-MU and 1,4-β-(Glc)2-MU). The kcat/Km value obtained for barley β-glucan was considerably larger than that for lichenan, indicating that SsGlc prefers 1,3-1,4-β-glucan possessing a larger amount of cellotetraose sequence. This is consistent with the data obtained for 1,3-1,4-β-glucosyl oligosaccharides. However, the kcat/Km value obtained for 1,4-β-(Glc)2-MU was considerably lower than that for 1,3-β-(Glc)2-MU, suggesting inconsistency with the data obtained from the other natural substrates. It is likely that the kinetic data obtained from such chromophoric substrates do not always reflect the true enzymatic properties.  相似文献   

5.
Henry reactions of a novel higher sugar derivative, (1R)-(1,4:3,6-dianhydro-d-mannitol-2-yl)-1,4:3,6-dianhydro-d-fructose 5,5′-dinitrate (Alternate nomenclature: (1R)-(isomannid-2-yl)-1,4:3,6-dianhydro-d-fructose 5,5′-dinitrate), with nitromethane and nitroethane were studied. The kinetic and thermodynamic reactions with nitromethane under different conditions were carried out to afford (2S)- and (2R)-β-nitroalcohols, respectively. But when using nitroethane the reaction gave a (2S)-β-nitroalcohol with an inverted configuration at vicinal carbon C-1. Two stereogenic centers were generated, and one was altered in the reaction.  相似文献   

6.
New large-scale synthetic approach to antiretroviral agent 9-[2-(R)-(phosphonomethoxy)propyl]-2,6-diaminopurine, (R)-PMPDAP, was developed. Reaction of (R)-propanediol carbonate with 2,6-diaminopurine afforded exclusively (R)-9-(2-hydroxypropyl)-2,6-diaminopurine which was subsequently used for introduction of a phosphonomethyl residue using TsOCH2P(O)(OiPr)2 or BrCH2P(O)(OiPr)2 followed by deprotection of ester groups. All minor ingredients and by-products formed during the process were identified and further studied. The final product was obtained in high yield and its high enantiomeric purity (>99%) was confirmed by chiral capillary electrophoretic analysis using β-cyclodextrin as a chiral selector. Antiretroviral activity data of (R)-PMPDAP and its diverse prodrugs against HIV and FIV were investigated. Akin to (R)-PMPDAP, both prodrugs inhibit FIV replication in a selective manner. Compared to the parent molecule, the amidate prodrug was 10-fold less active against FIV in cell culture, whereas the alkoxyalkyl ester prodrug was 200-fold more potent in inhibiting FIV replication in vitro.  相似文献   

7.
A sheath-forming sulfa oxidizer, Thiothrix nivea, was mixotrophically cultured in a medium supplemented with acetic acid and sodium disulfide. Its sheath, a microtube-like extracellular supermolecule, was prepared by selectively removing the cells with lysozyme, sodium dodecyl sulfate, and sodium hydroxide. The sheath was not visibly affected by hydrazine treatment, suggesting that it is not a proteinous supermolecule. From the acid hydrolysate of the sheath, glucose and glucosamine were detected in an approximate molar ratio of 1:1. Three other saccharic compounds were detected and recovered by HPLC as fluorescent derivatives prepared by reaction with 4-aminobenzoic acid ethyl ester. Nuclear magnetic resonance (NMR) analysis suggested that one of the derivatives was derived from an unidentified deoxypentose. NMR analysis for the other 2 derivatives showed that they were derived from β-1,4-linked disaccharides and tetrasaccharides, which were composed of glucose and glucosamine. The sheath was readily broken down by weak HCl treatment, releasing an unidentified deoxypentose and polymer. Chemical analysis showed the presence of β-1,4-linked d-Glcp and d-GlcNp in the polymer. NMR analysis revealed that the polymer had a repeating unit of →4)-d-Glcp-(β1→4)-d-GlcNp-(β1→. The solid-state 1D-13C NMR spectrum of the polymer in N-acetylated form supported this result. The molecular weight of the polymer was estimated to be 8.2 × 104 by size exclusion chromatography. Based on these results, the sheath of T. nivea is hypothesized to be assembled from alternately β-1,4-linked glucosaminoglucan grafted with unidentified deoxypentose.  相似文献   

8.
We report isolation and characterization of Campylobacter jejuni 81-176 lgtF and galT lipooligosaccharide (LOS) core mutants. It has been suggested that the lgtF gene of C. jejuni encodes a two-domain glucosyltransferase that is responsible for the transfer of a β-1,4-glucose residue on heptosyltransferase I (Hep I) and for the transfer of a β-1,2-glucose residue on Hep II. A site-specific mutation in the lgtF gene of C. jejuni 81-176 resulted in expression of a truncated LOS, and complementation of the mutant in trans restored the core mobility to that of the wild type. Mass spectrometry and nuclear magnetic resonance of the truncated LOS confirmed the loss of two glucose residues, a β-1,4-glucose on Hep I and a β-1,2-glucose on Hep II. Mutation of another gene, galT, encoding a glycosyltransferase, which maps outside the region defined as the LOS biosynthetic locus in C. jejuni 81-176, resulted in loss of the β-(1,4)-galactose residue and all distal residues in the core. Both mutants invaded intestinal epithelial cells in vitro at levels comparable to the wild-type levels, in marked contrast to a deeper inner core waaC mutant. These studies have important implications for the role of LOS in the pathogenesis of Campylobacter-mediated infection.  相似文献   

9.
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

10.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

11.
The synthesis is described of the glycotripeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L--seryl-L-nitroarginyl-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine, 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-seryl-L-nitroarginyl-L-aspart-1-oyl-(1-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and of the glycopentapeptide and glycohexapeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-threonyl-Nε-tosyl-L-lysine-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glycopyranosylamine and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-Nε-tosyl-L-lysyl-L-aspartic 1,4-di-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine.  相似文献   

12.
In this work, we identified a gene from Theobroma cacao L. genome and cDNA libraries, named TcGlu2, that encodes a β-1,3-1,4-glucanase. The TcGlu2 ORF was 720 bp in length and encoded a polypeptide of 239 amino acids with a molecular mass of 25.58 kDa. TcGlu2 contains a conserved domain characteristic of β-1,3-1,4-glucanases and presented high protein identity with β-1,3-1,4-glucanases from other plant species. Molecular modeling of TcGlu2 showed an active site of 13 amino acids typical of glucanase with β-1,3 and 1,4 action mode. The recombinant cDNA TcGlu2 obtained by heterologous expression in Escherichia coli and whose sequence was confirmed by mass spectrometry, has a molecular mass of about 22 kDa (with His-Tag) and showed antifungal activity against the fungus Moniliophthora perniciosa, causal agent of the witches’ broom disease in cacao. The integrity of the hyphae membranes of M. perniciosa, incubated with protein TcGlu2, was analyzed with propidium iodide. After 1 h of incubation, a strong fluorescence emitted by the hyphae indicating the hydrolysis of the membrane by TcGlu2, was observed. To our knowledge, this is the first study of a cacao β-1,3-1,4-glucanase expression in heterologous system and the first analysis showing the antifungal activity of a β-1,3-1,4-glucanase, in particular against M. perniciosa.  相似文献   

13.
A new glucanolytic bacterial strain, SU40 was isolated, and identified as Bacillus subtilis on the basis of 16S rRNA sequence homology and phylogenetic tree analysis. The gene encoding β-1,3-1,4-glucanase was delineated, cloned into pET 28a+ vector and heterologously overexpressed in Escherichia coli BL21(DE3). The purified recombinant enzyme was about 24 kDa. The enzyme exhibited maximum activity (36.84 U/ml) at 60°C, pH 8.0 and maintained 54% activity at 80°C after incubation for 60 min. The enzyme showed activity against β-glucan, lichenan, and xylan. Amino acid sequence shared a conserved motif EIDIEF. The predicted three-dimensional homology model of the enzyme showed the presence of catalytic residues Glu105, Glu109 and Asp107, single disulphide bridge between Cys32 and Cys61 and three calcium binding site residues Pro9, Gly45 and Asp207. Presence of calcium ion improves the thermal stability of SU40 β-1,3-1,4-glucanase. Molecular dynamics simulation studies revealed that the absence of calcium ion fluctuate the active site residues which are responsible for thermostability. The high catalytic activity and its stability to temperature, pH and metal ions indicated that the enzyme β-1,3-1,4-glucanase by B. subtilis SU40 is a good candidate for biotechnological applications.  相似文献   

14.
Aspergillus fumigatus is an environmental mold that causes severe, often fatal invasive infections in immunocompromised patients. The search for new antifungal drug targets is critical, and the synthesis of the cell wall represents a potential area to find such a target. Embedded within the main β-1,3-glucan core of the A. fumigatus cell wall is a mixed linkage, β-D-(1,3;1,4)-glucan. The role of this molecule or how it is synthesized is unknown, though it comprises 10% of the glucans within the wall. While this is not a well-studied molecule in fungi, it has been studied in plants. Using the sequences of two plant mixed linkage glucan synthases, a single ortholog was identified in A. fumigatus (Tft1). A strain lacking this enzyme (tft1Δ) was generated along with revertant strains containing the native gene under the control of either the native or a strongly expressing promoter. Immunofluorescence staining with an antibody against β-(1,3;1,4)-glucan and biochemical quantification of this polysaccharide in the tft1Δ strain demonstrated complete loss of this molecule. Reintroduction of the gene into the knockout strain yielded reappearance in amounts that correlated with expected expression of the gene. The loss of Tft1 and mixed linkage glucan yielded no in vitro growth phenotype. However, there was a modest increase in virulence for the tft1Δ strain in a wax worm model. While the precise roles for β-(1,3;1,4)-glucan within A. fumigatus cell wall are still uncertain, it is clear that Tft1 plays a pivotal role in the biosynthesis of this cell wall polysaccharide.  相似文献   

15.
The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.  相似文献   

16.
l-Ascorbic and d-isoascorbic acids have been used as the starting materials for the preparation of (3R,4′S)-3-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-1,4-dioxane-2,5-dione (IPTA), (3R and S, 4′S,6R)-3-methyl-6-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-1,4-dioxane-2,5-dione (IPTP) and (3R,4′R)-3-(2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-1,4-dioxane-2,5-dione (IPEA), three novel 1,4-dioxane-2,5-dione-type monomers. Ring-opening homopolymerisation and copolymerisation of the IPTA monomer, derived from l-ascorbic acid, with d,l-lactide have been performed. The polymers were characterised by elemental microanalysis, as well as IR and 1H and 13C NMR spectroscopies. GPC was used to estimate product molecular weights, and thermal studies (DSC and TGA) revealed that all the polymers were amorphous, being stable up to 250 °C under nitrogen.  相似文献   

17.
A thermophilic glycoside hydrolase family 16 (GH16) β-1,3-1,4-glucanase from Clostridium thermocellum (CtLic16A) holds great potentials in industrial applications due to its high specific activity and outstanding thermostability. In order to understand its molecular machinery, the crystal structure of CtLic16A was determined to 1.95 Å resolution. The enzyme folds into a classic GH16 β-jellyroll architecture which consists of two β-sheets atop each other, with the substrate-binding cleft lying on the concave side of the inner β-sheet. Two Bis–Tris propane molecules were found in the positive and negative substrate binding sites. Structural analysis suggests that the major differences between the CtLic16A and other GH16 β-1,3-1,4-glucanase structures occur at the protein exterior. Furthermore, the high catalytic efficacy and thermal profile of the CtLic16A are preserved in the enzyme produced in Pichia pastoris, encouraging its further commercial applications.  相似文献   

18.
Diastereomerically pure trans-1,4-cyclohexanedisulfonic acid H2CDS was prepared in three steps from 1,4-cyclohexanediol (cis/trans-mixture) as a new linker molecule for metal-organic coordination polymers. The crystalline zinc salt contained two molecules DMF per formular unit. Infinite polymeric belts were observed in the solid state structure of [Zn(CDS)(dmf)2]. These flat belts were formed by connecting two chains of Zn(dmf)-CDS-polymers bearing tetrahedrally coordinated Zn2+ ions in one chain and octahedrally coordinated Zn2+ centers in the second. Thermal analysis of this polymer revealed its stability up to 400 °C, above which it decomposed cleanly under formation of crystalline ZnO.  相似文献   

19.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

20.
Glycosyl 1,4-dihydropyridine analogue (2,6-dimethyl-4-(3-O-benzyl-1,2-O-isopropylidene-β-l-threo pentofuranos-4-yl)-1-phenyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid diethyl ester) synthesized in our laboratory, inhibited Leishmania donovani infection in vitro and in hamsters (Mesocricetus auratus) when administered orally. This analogue is nontoxic, cell-permeable and orally effective. This glycosyl dihydropyridine analogue functioned through arrest of cells in sub-G0/G1-phase, triggering mitochondrial membrane depolarization-mediated programmed cell death of the intracellular amastigotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号