首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have deployed the alpha-helical hairpin peptide (alpha-helix/turn/alpha-helix) and used it as a model system to explore how glycosylation and phosphorylation might affect the conformational properties of the peptide. The native conformations of the modified peptides in buffer solution have been compared with that of the wild-type peptide by nuclear magnetic resonance spectroscopy. Circular dichroism spectroscopy was used to probe the effects of an O-linked beta-GlcNAc and a phosphate group on the overall folding stability of the peptide. Finally, the rate of fibrillogenesis was used to infer the effects of these chemical modifications on the alpha-to-beta transition as well as the rate of nucleation of amyloidogenesis.  相似文献   

2.
The amino acid sequence and the glycosylation motif of the ribosome inactivating protein (RIP) gelonin are identified by Fourier transform ion cyclotron resonance mass spectrometry. Intact gelonin as isolated from the seeds of Gelonium multiflorum consists of at least three different post-translational modified forms: analysis of gelonin peptides as obtained by proteolytic digestion is consistent with the amino acid sequence published by Nolan et al. High resolution mass determination established a glycosylation pattern of GlcNAc2Man(3-5)Xyl. N189 was identified as glycosylation site. The proposed glycan structure is consistent with a standard plant N-glycosylation pattern as found in other RIP. Based on these results we suggest that gelonin is located in the vacuole of Gelonium multiflorum seeds.  相似文献   

3.
We report (a) on the synthesis of a long-wavelength fluorescent coumarin containing an allyloxy acetate moiety, (b) the synthesis of two linkers containing an allyloxy acetate and an alkyne or azide function, respectively, and (c) the selective modification human serum albumin by a sequential method involving Pd(II) catalyzed modification of the phenolic side chain of tyrosine residues with an alkyne bearing linker and a subsequent azide–alkyne click reaction with an azide functionalized long-wavelength emitting coumarin dye. The method is likely to be applicable to various kinds of azido-modified fluorophores, and the Pd(II)-catalyzed modification of the tyrosines may also be used to introduce other kinds of tags. With these reagents, tyrosine specific modulation of proteins and peptides becomes possible either directly or in a sequential manner.  相似文献   

4.
5.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R), an intracellular calcium channel, has three isoforms with >65% sequence homology, yet the isoforms differ in their function and regulation by post-translational modifications. We showed previously that InsP(3)R-1 is functionally modified by O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) (Rengifo, J., Gibson, C. J., Winkler, E., Collin, T., and Ehrlich, B. E. (2007) J. Neurosci. 27, 13813-13821). We now report the effect of O-GlcNAcylation on InsP(3)R-2 and InsP(3)R-3. Analysis of AR4-2J cells, a rat pancreatoma cell line expressing predominantly InsP(3)R-2, showed no detectable O-GlcNAcylation of InsP(3)R-2 and no significant functional changes despite the presence of the enzymes for addition (O-β-N-acetylglucosaminyltransferase) and removal (O-β-N-acetylglucosaminidase) of the monosaccharide. In contrast, InsP(3)R-3 in Mz-ChA-1 cells, a human cholangiocarcinoma cell line expressing predominantly InsP(3)R-3, was functionally modified by O-GlcNAcylation. Interestingly, the functional impact of O-GlcNAcylation on the InsP(3)R-3 channel was opposite the effect measured with InsP(3)R-1. Addition of O-GlcNAc by O-β-N-acetylglucosaminyltransferase increased InsP(3)R-3 single channel open probability. Incubation of Mz-ChA-1 cells in hyperglycemic medium caused an increase in the InsP(3)-dependent calcium release from the endoplasmic reticulum. The dynamic and inducible nature of O-GlcNAcylation and the InsP(3)R isoform specificity suggest that this form of modification of InsP(3)R and subsequent changes in intracellular calcium transients are important in physiological and pathophysiological processes.  相似文献   

6.
Taylor AM  Holst O  Thomas-Oates J 《Proteomics》2006,6(10):2936-2946
Glycosylation is a widespread PTM of proteins; the carbohydrate moieties provide various functional, immunological and structural aspects of both eukaryotic and prokaryotic glycoproteins. Traditional strategies used to analyse glycoprotein O-glycans involve glycoprotein isolation, followed by glycan release using solution-phase base-catalysed beta-elimination. However, in a proteomics context, mixtures of proteins and glycoproteins are routinely separated using SDS-PAGE. We have therefore developed a method to enable the profiling of O-linked glycans directly from glycoproteins on gels. This is achieved using in-gel reductive beta-elimination followed by mass spectrometric analysis of the released glycans. Here we describe our demonstration of the feasibility of this approach, our development and optimisation of the procedure using bovine submaxillary gland glycoproteins as a standard, and then show its usefulness by applying the developed procedure to the analysis of the O-glycans from a glycoprotein band from a Coomassie-stained SDS-PAGE separation of a mixture of Mycobacterium avium capsular proteins and glycoproteins. The procedure has been shown to be applicable to both CBB- and silver-stained gels. The method offers a quick and easy way to identify the O-glycans from gel-separated glycoproteins within gel-based proteomics workflows.  相似文献   

7.
The enzyme endo-polygalacturonase A, or PGA, is produced by the fungus, Aspergillus niger, and appears to play a critical role during invasion of plant cell walls. The enzyme has been homologously overexpressed in order to provide sufficient quantities of purified enzyme for structural and biological studies. We have characterized this enzyme in terms of its post-translational modifications (PTMs) and found it to be both N- and O-glycosylated. Additionally, we have characterized the glycosyl moieties using MALDI-TOF and LC-ESI mass spectrometry. The characterization of all PTMs on PGA, along with molecular modeling, allows us to reveal potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.  相似文献   

8.
Chen Q  Yang F  Du Y 《Carbohydrate research》2005,340(16):2476-2482
A C3-symmetric (1-->6)-N-acetyl-beta-D-glucosamine octadecasaccharide was convergently synthesized on the basis of a copper(I)-catalyzed 1,3-dipolar cycloaddition reaction of azide and alkyne. The target octadecasaccharide showed good antitumor activity against H22 in the preliminary mice tests.  相似文献   

9.
Cheng L  Chen Q  Liu J  Du Y 《Carbohydrate research》2007,342(7):975-981
An N-dansyl-labeled K30 antigen repeating unit, [4-[5-(N,N'-dimethylamino)naphthalene-1-sulfonamine]-1H-1,2,3-triazol-1-yl]hexyl beta-D-glucopyranosyluronate-(1-->3)-alpha-D-galactopyranosyl-alpha-D-mannopyranosyl-(1-->3)-beta-D-galactopyranoside, was synthesized using click chemistry, the copper(I)-catalyzed 1,3-dipolar cycloaddition reaction of an azide and an alkyne. The target compound could further facilitate the studies of interactions among K30 oligosaccharides and proteins.  相似文献   

10.
Zhitao Li 《Carbohydrate research》2010,345(13):1952-9209
Protecting groups often have profound influences on the stereoselectivity of glycosylation reactions. The effects of many protecting groups, especially cyclic protecting groups, are not well understood and difficult to explain and predict. Computational methods were used to study the effect of benzylidene acetal and cyclic carbonate protecting groups in glycosylation reactions, and the results provided a theoretical explanation for experimental observations.  相似文献   

11.
A series of ‘clickable’ mannopyranosides bearing a triflate leaving group at C-2 position were synthesized and tested for their potential as 18F-labeling precursors. 3,4,6-Tri-O-acetyl-2-O-trifluoromethanesulfonyl-β-d-mannopyranosyl azide () was the most convenient precursor for a site-specific and reliable click chemistry-based three-step, two-pot concomitant 18F-labeling and glycosylation of an alkyne-functionalized amino acid derivative.  相似文献   

12.
13.
14.
A common technique for analysis of protein glycosylation is HPLC coupled to mass spectrometry (LC-MS). However, analysis is challenging due to a low abundance of glycopeptides in complex protein digests, microheterogeneity at the glycosylation site, ion suppression effects, and competition for ionization by coeluting peptides. Specific sample preparation is necessary for a comprehensive and site-specific glycosylation analysis by MS. In this study we qualitatively compared hydrophilic interaction chromatography (HILIC) and hydrazine chemistry for the enrichment of all N-linked glycopeptides and titanium dioxide for capturing sialylated glycopeptides from a complex peptide mixture. Bare silica, microcrystalline cellulose, amino-, amide- (TSKgel Amide-80), and sulfobetaine-(ZIC-HILIC) bonded phases were evaluated for HILIC enrichment. The experiments revealed that ZIC-HILIC and TSKgel Amide-80 are very specific for capturing glycopeptides under optimized conditions. Quantitative analysis of N-glycosidase F-released and 2-aminobenzamide-labeled glycans of a ZIC-HILIC-enriched monoclonal antibody demonstrated that glycopeptides could be enriched without bias for particular glycan structures and without significant losses. Sialylated glycopeptides could be efficiently enriched by titanium dioxide and in addition to HILIC both methods enable a comprehensive analysis of protein glycosylation by MS. Enrichment of N-linked glycopeptides by hydrazine chemistry resulted in lower peptide recovery using a more complex enrichment scheme.  相似文献   

15.
GPR56 is an atypical G protein-coupled receptor (GPCR) with an unusually large N-terminal extracellular region, which contains a long Ser/Thr-rich region forming a mucin-like stalk and due to this feature, GPR56 is thought to be an adhesion GPCR. Recent studies demonstrate that GPR56 plays a role in brain development and tumorigenesis. Here, we report that human GPR56 undergoes GPS (GPCR proteolytic site)-mediated protein cleavage to generate its extracellular domain as an N-terminal fragment (GPR56-N). We also show that GPR56-N is highly glycosylated with N-linked carbohydrate chains. Mouse Gpr56 is ubiquitously expressed in various tissues, with high levels in kidney and pancreas. GPR56 mRNA is detected in diverse human cancer cells including pancreatic cancer cells PANC-1, Capan-1, and MiaCaPa-2. Interestingly, GPR56 protein is either negligible or undetectable in these pancreatic cancer cells, despite the fact that high levels of GPR56 mRNA are observed. Moreover, we have found that protein levels of GPR56 in pancreatic cancer cells were not affected when cells were treated with a proteasome inhibitor MG132. Taken together, these results define the biochemical properties of GPR56 protein, and suggest that the expression of GPR56 protein is suppressed in human pancreatic cancer cells. Yue Huang and Jun Fan contributed equally to this work.  相似文献   

16.
Tetraphenylethylene (TPE) derivatives have strong fluorescence in aggregated state. We designed and synthesized a tetraphenylethylene derivative bearing alkyne groups which were used for combination by click chemistry. The new TPE compound bearing alkyne groups was used to synthesize fluorescence oligosaccharide probes which have lactosyl and 6′-sialyllactosyl moieties as ligands. We found that the TPE compounds bearing lactosyl and 6′-sialyllactosyl moieties were useful for detection of RCA120 and SSA lectins, respectively. Moreover, we have shown that TPE-based fluorescent oligosaccharide probe bearing 6′-sialyllactose moiety can be utilized as a “turn-on” fluorescent sensor for detection of influenza virus.  相似文献   

17.
Mucin-type O-glycosylation represents a major form of post-translational modification that is conserved across most eukaryotic species. This type of glycosylation is initiated by a family of enzymes (GalNAc-Ts in mammals and PGANTs in Drosophila) whose members are expressed in distinct spatial and temporal patterns during development. Previous work from our group demonstrated that one member of this family is essential for viability and another member modulates extracellular matrix composition and integrin-mediated cell adhesion during development. To investigate whether other members of this family are essential, we employed RNA interference (RNAi) to each gene in vivo. Using this approach, we identified 4 additional pgant genes that are required for viability. Ubiquitous RNAi to pgant4, pgant5, pgant7, or the putative glycosyltransferase CG30463 resulted in lethality. Tissue-specific RNAi was also used to define the specific organ systems and tissues in which each essential family member is required. Interestingly, each essential pgant had a unique complement of tissues in which it was required. Additionally, certain tissues (mesoderm, digestive system, and tracheal system) required more than one pgant, suggesting unique functions for specific enzymes in these tissues. Expanding upon our RNAi results, we found that conventional mutations in pgant5 resulted in lethality and specific defects in specialized cells of the digestive tract, resulting in loss of proper digestive system acidification. In summary, our results highlight essential roles for O-glycosylation and specific members of the pgant family in many aspects of development and organogenesis.  相似文献   

18.
A new tripod molecule containing an aromatic core bearing three peracetylated cyclodextrins was synthesized via a microwave-assisted Huisgen 1,3-dipolar cycloaddition and was studied by fluorescence spectroscopy. The photoluminescent properties of complexation phenomena with different pesticides were evaluated in acetonitrile. Fluorescence titrations have been performed to calculate binding constants, sensitivity factors, and limit of detection of the resulting complexes. 2D NMR experiments confirmed the inclusion of pesticide in the hydrophobic cavity of the macrocycle and validated the supramolecular association responsible for the quenching of the fluorescence.  相似文献   

19.
Three triazole-linked nonionic xylo-nucleoside dimers TL-t-TxL, TL-t-ABzxL and TL-t-CBzxL have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3′-azido-3′-deoxy-2′-O,4′-C-methylene-β-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)thymine, 9-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)-N4-benzoylcytosine in 90%–92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:tBuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.  相似文献   

20.
The blue copper protein azurin from Pseudomonas aeruginosa has been covalently labelled with the fluorescing dye Cy5. The optical spectrum of the azurin changes markedly with its redox state. These changes are reflected in the fluorescence intensity of the dye through fluorescence resonance energy transfer (FRET). This provides a sensitive way to monitor biological redox events. The method shown to work in the nanomolar range of protein concentrations, can be easily extended into the sub-nanomolar regime and holds promise for single-molecule detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号