首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two series of N-hydroxyformamide inhibitors of ADAM-TS4 were identified from screening compounds previously synthesised as inhibitors of matrix metalloproteinase-13 (collagenase-3). Understanding of the binding mode of this class of compound using ADAM-TS1 as a structural surrogate has led to the discovery of potent and very selective inhibitors with favourable DMPK properties. Synthesis, structure-activity relationships, and strategies to improve selectivity and lower in vivo metabolic clearance are described.  相似文献   

2.
Aggrecanases that include ADAMTS1, 4, 5, 8, 9 and 15 are considered to play key roles in aggrecan degradation in osteoarthritic cartilage. Here we demonstrate that calcium pentosan polysulfate (CaPPS) directly inhibits the aggrecanase activity of ADAMTS4 without affecting the mRNA expression of the ADAMTS species in interleukin-1alpha-stimulated osteoarthritic chondrocytes. Synthetic peptides corresponding to specific regions of the thrombospondin type 1 repeat, cysteine-rich or spacer domain of ADAMTS4 inhibit the binding to immobilized CaPPS. These data suggest that CaPPS could function as chondroprotective agent for the treatment of osteoarthritis by inhibition of ADAMTS4 through interaction with the C-terminal ancillary domain.  相似文献   

3.
ADAMTS-4 (aggrecanase 1) is synthesized as a latent precursor protein that may require activation through removal of its prodomain before it can exert catalytic activity. We examined various proteinases as well as auto-activation under a wide range of conditions for removal of the prodomain and induction of enzymatic activity. The proprotein convertases, furin, PACE4, and PC5/6 efficiently removed the prodomain through cleavage at Arg(212)/Phe(213), generating an active enzyme. Of a broad range of proteases evaluated, only MMP-9 and trypsin were capable of removing the prodomain. In the presence of mercuric compounds, removal of the prodomain through autocatalysis was not observed, nor was it observed at temperatures from 22 to 65 degrees C, at ionic strengths from 0.1 to 1M, or at acidic/neutral pH. At basic pH 8-10, removal of the prodomain by autocatalysis occurred, generating an active enzyme. In conclusion, the pro-form of ADAMTS-4 is not catalytically active and only a limited number of mechanisms mediate its N-terminal activation.  相似文献   

4.
Degradation of the cartilage proteoglycan aggrecan is an early event in the development of osteoarthritis, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 are considered to be the major aggrecan-degrading enzymes. We have recently found that ADAMTS-5 is rapidly endocytosed via low density lipoprotein receptor-related protein 1 (LRP1) and degraded by chondrocytes. Here we report that this regulatory mechanism also applies to ADAMTS-4, although its rate of endocytosis is slower than that of ADAMTS-5. Domain deletion mutagenesis of ADAMTS-4 identified that the cysteine-rich and spacer domains are responsible for binding to LRP1, whereas the thrombospondin 1 and spacer domains are responsible in ADAMTS-5. The estimated t½ value of ADAMTS-4 endocytosis was about 220 min, whereas that of ADAMTS-5 was 100 min. The difference in half-lives between the two enzymes is explained by the 13-fold lower affinity of ADAMTS-4 for LRP1 compared with that of ADAMTS-5. Studies using soluble ligand binding clusters of LRP1 showed that ADAMTS-4 binds to clusters II and IV with similar KD,app values of 98 and 73 nm, respectively, whereas ADAMTS-5 binds to cluster II, III, and IV with KD,app values of 3.5, 41, and 9 nm, respectively. Thus, ADAMTS-5 competitively inhibits ADAMTS-4 endocytosis but not vice versa. This study highlights that the affinity between a ligand and LRP1 dictates the rate of internalization and suggests that LRP1 is a major traffic controller of the two aggrecanases, especially under inflammatory conditions, where the protein levels of ADAMTS-4 increase, but those of ADAMTS-5 do not.  相似文献   

5.
The proteoglycan aggrecan is an important major component of cartilage matrix that gives articular cartilage the ability to withstand compression. Increased breakdown of aggrecan is associated with the development of arthritis and is considered to be catalyzed by aggrecanases, members of the ADAM-TS family of metalloproteinases. Four endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate the activities of functional matrix metalloproteinases (MMPs), enzymes that degrade most components of connective tissue, but no endogenous factors responsible for the regulation of aggrecanases have been found. We show here that the N-terminal inhibitory domain of TIMP-3, a member of the TIMP family that has functional properties distinct from other TIMPs, is a strong inhibitor of human aggrecanases 1 and 2, with K(i) values in the subnanomolar range. This truncated inhibitor, which lacks the C-terminal domain that is responsible for interactions with molecules other than active metalloproteinases, is produced at high yield by bacterial expression and folding from inclusion bodies. This provides a starting point for developing a biologically available aggrecanase inhibitor suitable for the treatment of arthritis.  相似文献   

6.
ADAM-TS5 (aggrecanase 2), one of two cartilage aggrecanases is a member of the ADAM protein family. Like ADAM-TS4 (aggrecanase 1) the enzyme cleaves cartilage aggrecan at the Glu(373)-Ala(374) bond, a marker of aggrecanase activity. In this study we have characterized the substrate specificity of ADAM-TS5 and compared it with that of ADAM-TS4. The recombinant human ADAM-TS5, like ADAM-TS4 cleaves aggrecan at Glu(1480)-Gly(1481), Glu(1667)-Gly(1668), Glu(1771)-Ala(1772) and Glu(1871)-Leu(1872) bonds more readily than at the Glu(373)-Ala(374) bond. In addition, ADAM-TS5 exhibited an additional site of cleavage in the region spanning residues Gly(1481) and Glu(1667), representing a unique cleavage of ADAM-TS5. ADAM-TS5 cleaved aggrecan approximately 2-fold slower than ADAM-TS4. Neither ADAM-TS5 nor ADAM-TS4 was able to cleave the extracellular matrix proteins fibronectin, thrombospondin, type I collagen, type II collagen, gelatin or general protein substrates such as casein and transferrin. Finally, the zymogen of stromelysin (MMP-3) was not activated by either ADAM-TS4 or ADAM-TS5.  相似文献   

7.
8.
ADAMTS4 (aggrecanase-1) is considered to play a key role in the degradation of aggrecan in arthritides. The inhibitory activity of tissue inhibitors of metalloproteinases (TIMPs) to ADAMTS4 was examined in an assay using aggrecan substrate. Among the four TIMPs, TIMP-3 inhibited the activity most efficiently with an IC(50) value of 7.9 nM, which was at least 44-fold lower than that of TIMP-1 (350 nM) and TIMP-2 (420 nM) and >250-fold less than that of TIMP-4 (2 microM for 35% inhibition). These results suggest that TIMP-3 is a potent inhibitor against the aggrecanase activity of ADAMTS4 in vivo.  相似文献   

9.
We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.  相似文献   

10.
A series of thiazole bearing thiazolidin-4-one was discovered via high-throughput screening as non-competitive inhibitors of ADAMTS-5. Compound 31 appeared to give the best ADAMTS-5 inhibition and good selectivity over other metalloproteases.  相似文献   

11.
Strategies for the preparation of new fluorescent oligopeptide conjugates labeled with 4-ethoxymethylene-2-[1]-naphthyl-5(4H)-oxazolone (naOx-OEt) at the N-terminal on solid support or in solution have been devised. These procedures are simple and easy to carry out by reacting naOx-OEt or N(alpha)-naOx-amino acid with side chain protected peptide chains attached to resins. The integrity of the N-alkyl bond was maintained even after the trifluoracetic acid or HF based cleavages procedures. Our data show that the naOx fluorophore is compatible with both Fmoc/tBu and Boc/Bzl methods and also suggest that naOx-amino acid could be utilized as building blocks for solid phase peptide synthesis. Comparative analysis of fluorescence properties of naOx-conjugates indicated that the spectral properties of the fluorophore do not change after incorporating into peptides. The compact size, the definite chemical reaction for its introduction in combination with the appropriate spectral features (e.g., intense emission, pH independent fluorescent characteristics, and beneficial photobleaching dose constant and rates) and with chemical and spectral stability, naOx-based labeling could be attractive for novel cellular fluorescent techniques (e.g., in laser scanning confocal FRET) to study peptide-protein and protein-protein interactions even in biological matrices.  相似文献   

12.
A series of 1,1-dioxothieno[2,3-d]isothiazole (thienosultam) derivatives were designed and synthesized as novel ADAMTS-5 inhibitors for an investigation into a side chain of thienosultam for the S1′ pocket. The resulting compounds (19 and 24) show high ADAMTS-5 inhibition and other MMP selectivity, and these compounds show good oral bioavailability.  相似文献   

13.
The substituents both at the 6-position of the 5-bromopyrimidinone ring and at the 5′-position of the phenyl ring of 5-bromopyrimidin-4(3H)-ones were explored. 5-Bromo-6-isopropyl-2-(2-propoxy-phenyl)pyrimidin-4(3H)-one was identified as a new scaffold for potent PDE5 inhibitors. The crystal structures of PDE5/2e and PDE5/10a complexes provided a structural basis for the inhibition of 5-bromopyrimidinones to PDE5. In addition, it was also found that there is a great tolerance for the substitution at the 5′-position of the phenyl ring of 5-bormopyrimidinones and the resulted compound 13a has the highest inhibition activity to PDE5 (IC50, 1.7 nM).  相似文献   

14.
Modification of -biphenylsulfonamidocarboxylic acids led to potent and selective MMP-13 inhibitors. Compound 16 showed 100% oral bioavailability in rats and demonstrated >50% inhibition of bovine cartilage degradation at 10 ng/mL.  相似文献   

15.
A series of (2-aryl-5-methylimidazol-4-ylcarbonyl)guanidines and (2-aryl-5-methyloxazol-4-ylcarbonyl)guanidines were synthesized and evaluated as NHE-1 inhibitors. The structure–activity relationships well matched those of furan derivatives, which were previously investigated. The (2,5-disubstituted)phenyl compounds showed better activities than the other analogues in both imidazole and oxazole compounds. Especially, 2-(2,5-dichlorophenyl)imidazole 52, and 2-(2-methoxy-5-chlorophenyl)imidazole 54 compounds exhibited potent cardioprotective efficacy both in vitro and in vivo as well as high NHE-1 inhibitory activities.  相似文献   

16.
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.  相似文献   

17.
An enzyme cleaving l-2-oxothiazolidine-4-carboxylic acid to l-cysteine was purified 75-fold with 8% recovery to near homogeneity from crude extracts of Paecilomyces varioti F-1, which had been isolated as a fungus able to assimilate l-2-oxothiazolidine-4-carboxylic acid. The molecular mass was estimated to be 260 kDa by gel filtration. The purified preparation migrated as a single band of molecular mass 140 kDa upon SDS-PAGE. The maximum activity was observed at a range of pH 7.0–8.0 and at 50 °C. The enzyme activity was completely inhibited by SH-blocking reagents such as AgNO3, p-chloromercuribenzoic acid, N-ethylmaleimide, and N-bromosuccinimide. The enzyme required ATP, Mg2+, and KCl for the cleavage of l-2-oxothiazolidine-4-carboxylic acid. The enzyme also cleaved 5-oxo-l-proline to l-glutamic acid and is considered to be 5-oxo-l-prolinase. Received: 23 March 1999 / Accepted: 22 June 1999  相似文献   

18.
3-[2-Amino-2-imidazolin-4(5)-yl]alanine (enduracididine) and 2-[2-amino-2-imidazolin-4(5)-yl] acetic acid have been isolated from seeds of Lonchocarpus sericeus. The concentration of each compound was ca 0.5 % of the fresh seed weight.  相似文献   

19.
The influence of MX(3-Chloro-4(Dichloromethyl)-5-Hydroxy-2(5H)- Furanone), a stronglymutagenic compound, on the temperature dependence of the dcelectrical conductivity of collagen as a function of time was studied.Collagen was immersed in MX solution, next dried and pressed intotablets. The MX concentration was measured by HPLC analysis.The reduction of MX concentration to 10% of the initial value wasobserved in the presence of collagen in the solution, whereas in thecontrol solution concentration of MX decreased to 70% of the initialvalue. Measurements of electrical conductivity were performed for thetemperature range 295–453K and activation energies for the chargeconduction process were calculated. Within the temperature range295–340K, the presence of MX decreased electrical conductivity ofcollagen. Calculated activation energies were typical for dry proteins.Within the temperature range 295–320K activation energy decreasedwith time, probably due to the stronger interactions in thecollagen-water-MX system. For temperatures between 320–410 and430–450K the activation energy was not time dependent and theapplication of MX did not change the structure of the collagenmacromolecule. The temporary changes occurring at the lowertemperatures being due solely to changes in the collagen-waterinteractions.  相似文献   

20.
Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F = 78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3 h after a single, 10 mg/kg, subcutaneous dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号