首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Addition of 2.5 mM cyclic adenosine monophosphate (cAMP) to the solution bathing a rat diaphragm muscle alters the magnitude of depolarization responses to iontophoretic pulses of acetylcholine (ACh) at neuromuscular endplates. Alterations are repeatable with small variability on a given preparation for initial and repeat experiments on both hemidiaphragms, but are different on each preparation. Five min after addition of the nucleotide solution, increases (potentiations) of up to 30% above control levels and decreases (attenuations) to 50% below control levels are observed. The effects on sensitivity to ACh of dibutyryl cAMP (1.25 mM), monobutyryl cAMP (0.25 mM), and cAMP (2.5 mM) in Ca++-free solution are a function of whether the experiment is an initial one on that preparation or a repeat experiment after 10 or more minutes of perfusion flow. In all three cases, initial exposure attenuates sensitivity (means at 5 min: –30, –10, and –20%, respectively) and repeat exposure potentiates sensitivity (means: 20% at 5 min, 15% at 5 min, and 10% at 2 min respectively). A concentration of dibutyryl cAMP (0.25 mM) which is without effect on sensitivity alone, produces a large, transient potentiation (mean: 45% at 1 min) in conjunction with 0.5 mM theophylline. A decrease in the rate of desensitization is observed during exposure to 0.25 mM cAMP. These results are interpreted in terms of a physiological mechanism whereby receptor activity at the postjunctional membrane is modulated by cAMP formed from prejunctionally released ATP.  相似文献   

2.
Choline and acetylcholine metabolism in rat neostriatal slices   总被引:4,自引:3,他引:1  
Choline (Ch) uptake and release and acetylcholine (ACh) synthesis and release have been studied by gas chromatography mass spectrometry (GCMS) in slices of rat neostriatum in vitro to assess the effects of depolarization by 25 mM K+ and the influence of elevated concentrations of Ch in the incubation medium. During the first 60 min after preparation, 25 mM K+ increased ACh release by 182% and reduced ACh levels by 40%. The rate of ACh synthesis was unchanged. After a 1-h equilibration period, the rate of ACh synthesis was considerably less (2.41 nmol mg-1 h-1, compared to 9.78 nmol mg-1 h-1). Exposure to 25 mM K+ during the second hour increased the rate to 6.47 nmol mg-1 h-1. During the first 10 min of exposure to 25 mM K+, ACh synthesis was reduced, regardless of incubation. Increasing concentrations of external [2H4]Ch apparently favored initial rates of net ACh synthesis, since the rank order of initial net ACh synthesis rates is the same as the rank order of external [2H4] Ch concentration under both normal and depolarized conditions. However, the only significant effect of external [2H4]Ch on ACh metabolism was that it increased ACh release during the initial 10 min, when the preparation was depolarized with K+. The efflux of endogenous [2H0]Ch was increased initially (10 min) and slowed over a 60-min period by 25 mM K+, and increased when [2H4]Ch in the medium was increased. Changes in ACh synthesis and release were dependent upon the time exposure of slices to high K+, and the results suggest that Ch favors initial rates of ACh synthesis, but that Ch influences ACh release primarily under conditions of stress (i.e., depolarization).  相似文献   

3.
The cholinergic sensitivity of rat diaphragm muscle, me-sured as the magnitude of depolarization responses to repetitive, iontophoretic pulses of acetylcholine (ACh) onto neuromuscular endplates, is increased by addition of ATP to the perfusion medium. Depolarization responses begin to increase within the first min after addition of 10 mM ATP and plateau at 60% above control levels (mean value) after 4 to 6 min. Neither the magnitude nor the time course of the potentiations corresponds to changes in resting potential or membrane resistance. Other nucleotides are equally or less effective at the same concentration: ATP=ADP greater than UTP greater than AMP=GTP (=no added nucleotide control) The duration of the individual ACh responses does not increase during continuous exposure to the active nucleotides for up to 15 min except when the muscle is pretreated with eserine. Mild enzymatic predigestion of the muscle with collagenase and then protease, increasing the availability of the postjunctional membrane to bath-applied drugs, decreases the variability and increases the magnitude of the potentiation to a given dose of ATP. The dose-response curve for ATP is then more than half-maximal at 1 mM and the ranking of the other nucleotides relative to ATP is the same as without predigestion. There is an optimum Ca++ concentration for the potentiation between zero and 2 mM: potentiation is enhanced in Ca++ -free medium, partially blocked in twice-normal Ca++ medium, and totally blocked in Ca++ -free medium 10 min after a 5 min exposure to 2.5 mM EGTA. The similar Ca++ dependence of ACh receptor activation in the absence of added nucleotide suggests that ATP directly facilitates receptor activation by ACh. This facilitory action could be one of the physiological roles for the ATP released from stimulated phrenic nerve.  相似文献   

4.
Starvation increased pyruvate dehydrogenase (PDH) kinase activity in extracts of freshly excised rat soleus 2.2-fold (from 0.6 min-1 in fed rats to 1.31 min-1 in 48-h-starved rats). In fed rats, activities were unchanged following 24 h of culture in medium 199, but increased 2.1-fold on 24 h of culture with 50 microM dibutyryl cAMP plus 1 mM n-octanoate and 1.6-1.7-fold with either agent alone. Approx. 70% of the increase in PDH kinase induced by starvation was lost following 24 h of culture in medium 199; the loss was prevented by 50 microM dibutyryl cAMP plus 1 mM n-octanoate. cAMP concentrations in fresh soleus muscle were 1 nmol/g (fed rats) and 1.6 nmol/g (starved rats). After 20-60 min of culture the fed-starved difference disappeared and [cAMP] fell to 0.4 nmol/g. Calcitonin-gene-related peptide (CGRP) increased cAMP 3-fold; the increase was maintained throughout 24 h of culture, but was readily reversed at 30 min or 24 h of culture by 60-min incubation with CGRP-free medium. Starvation of the rat (48 h) had no effect on the sensitivity of soleus towards the [cAMP]-increasing effect of CGRP. It is concluded that culture may reverse effects of starvation on PDH kinase activity by lowering cAMP and by removal from the in vivo effects of circulating free fatty acids; and that starvation and CGRP had no detectable long-term effects on the cAMP system in soleus muscle.  相似文献   

5.
Intraventricular administration of 100 μg of dibutyryl cAMP failed to elevate striatal acetylcholine (ACh). Chlorpromazine (CPZ) significantly (p < 0.005) decreased ACh concentration in the striatum. Intraventricular administration of dibutyryl cAMP prior to CPZ prevented the release of ACh, suggesting that cAMP is the substance which mediates dopamine-induced responses to the cholinergic system in the striatum.  相似文献   

6.
The regulation of avian lipoprotein lipase by dibutyryl cyclic AMP in cultured adipocytes was studied with quantitative and specific methods for the measurements of enzyme catalytic activity, enzyme protein mass, and immunoadsorption of labeled enzyme. Incubation of adipocytes in 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline results in a time-dependent decrease in cell lipoprotein lipase catalytic activity. The activity is decreased by 70% in 4 h and over 90% by 12 h. The decrease in cellular catalytic activity is due to a decrease in both enzyme content and enzyme catalytic efficiency. 4 h after exposure of adipocytes to cAMP, enzyme protein was decreased from 3.58 +/- 0.5 to 1.92 +/- 0.1 ng/dish and specific activity from 15.1 +/- 2.1 to 8.4 +/- 1.1 nmol/ng. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in lipoprotein lipase activity was half-maximal at less than 25 microM dibutyryl cyclic AMP. The rate of lipoprotein lipase synthesis was estimated by measuring the incorporation of L-[35S]methionine into enzyme protein during 30 min. A method for the quantitative immunoadsorption of lipoprotein lipase from cell lysates was developed. Utilizing this immunoadsorption technique, the rate of incorporation of L-[35S]methionine into lipoprotein lipase was 0.0026 +/- 0.002%, when expressed as a percentage of that incorporated into total trichloroacetic acid-precipitable counts. By 2 h after exposure of adipocytes to 0.5 mM dibutyryl cAMP, the relative synthesis rate had already decreased to 64 +/- 4% of the control rate. After 16 h the synthesis rate was 43.2 +/- 13.8% of the control rate. The observed decreased synthesis rate could account for most of the decreased cellular enzyme content and diminished enzyme secretion rate.  相似文献   

7.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

8.
The effects of various concentrations of extracellular K+ (3.6-13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca2+. Small amounts of EGTA (50 microM) were added to reduce the free Ca2+ concentrations effectively to zero at the lowest possible total Ca2+ concentration. At a total extracellular concentration of 2.5 mM Ca2+, in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K+. The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K+ compared with that at 3.6 mM were highly significant (p less than 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K+. Lowering the effective free concentration of Ca2+ to zero decreased the steroid and cAMP outputs significantly at all K+ concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K+ (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K+). Nifedipine (10(-6) to 10(-4) M) was added to the incubations with the aim of specifically inhibiting Ca2+ influx at total extracellular Ca2+ concentrations of 2.5, 1.25 and 0.25 mM and with the usual K+ concentrations. The cAMP outputs were reduced at all K+ concentrations above 3.6 mM K+. The effect was highly significant at 10(-4) M nifedipine and a total Ca2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca2+ concentrations in vivo. These results indicate that cAMP plays a significant role in the stimulation of steroid output by K+ particularly between 3.6 and 8.4 mM K+. In this range of K+ concentrations the stimulation of cAMP seems to be controlled by increases in Ca2+ influx. The correlation of steroid and cAMP output at the higher K+ concentrations (between 8.4 and 13 mM K) and at the various total Ca2+ concentrations is less significant. Also, with all concentrations of added nifedipine there is an 'anomalous' increase in steroid output at 13 mM K+ and at total Ca2+ concentrations of 2.5 and 1.25 mM. However, at the same K+ concentrations and at 0.25 mM Ca2+, nifedipine decreases steroid outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Ornithine decarboxylase activity (ODC) increased about 7 fold 6--8 h following 10mM asparagine (ASN) addition to confluent cultures that had been previously serum deprived and then placed in a salts/glucose medium. Optimal concentrations of dibutyryl cAMP (dB cAMP) when incubated with the ASN caused up to a 50 fold increase in the activity of this enzyme after 7--8 h. The enhancement of ODC activity by ASN and dB cAMP was not sensitive to continuous (0--7 h) treatment with actinomycin D but similar treatment with cycloheximide depressed enzyme activity 40--60%. The synergistic stimulation of ODC activity by dB cAMP added with ASN was dose dependent and the dB cAMP stimulation of ODC activity displayed an absolute requirement for ASN when cells were maintained in the salts/glucose medium. The addition of dB cAMP always further enhanced ODC activity above the levels produced by addition of various levels of ASN (1 to 40mM) to the salts/glucose medium. Other agents which elevated cAMP levels such as 1-methyl-3-isobutylxanthine (IBMX) also enhanced ODC activity when administered with ASN. Additionally, treatment with sodium butyrate at concentrations ranging from 0.001mM to 5.0mM did not elevate ODC activity above the activity obtained with ASN alone. Addition of dB cAMP at various times after placing cells in salts/glucose medium with ASN further stimulated ODC activity only when added during the first 3-4 h. These results demonstrate the involvement of cAMP in the ASN mediated stimulation of ODC activity using cells maintained in a salts/glucose medium.  相似文献   

10.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

11.
(1) Ovine luteinizing hormone (LH) stimulates cyclic AMP (cAMP) and progesterone production (P) throughout late ontogeny of the chick ovary and cAMP mimicks LH in stimulating P secretion but: (2) P/cAMP ratios are lower at the earliest stages than at hatching, LH enhancing this tendency. (3) Immediately before hatching, on day 19 time-courses of LH stimulations of cAMP and P are different. (4) cAMP and P respond differently to increasing doses of LH but similarly to increasing doses of forskolin. (5) 1.5 mM dibutyryl cAMP (I) and 100 ng LH (II) increase P maximally, 2.5- and 3.3-fold respectively, but a mixture (I + II) increases P 7.5-fold.  相似文献   

12.
We tested the hypothesis that the adenylate cyclase system and Na+, K(+)-ATPase are reciprocally related in rat pancreatic islets. We studied the effect of theophylline, caffeine, and dibutyryl cyclic AMP on Na+, K(+)-ATPase activity in a membrane preparation from collagenase-isolated rat islets. Theophylline, caffeine, or dibutyryl cyclic AMP, in concentrations of 1 mM, all inhibited Na+, K(+)-ATPase activity (44,62, and 43%, respectively). Kinetic analysis indicated that theophylline and dibutyryl cAMP inhibit Na+, K(+)-ATPase by different mechanisms; theophylline decreased Vmax and decreased apparent Km (ATP), whereas dibutyryl cAMP decreased Vmax and increased apparent Km (ATP). Similar inhibition of Na+, K(+)-ATPase by theophylline or dibutyryl cAMP was noted in a particulate fraction from rat kidney and in a purified porcine brain Na+, K(+)-ATPase preparation. The adenylate cyclase system and Na+, K(+)-ATPase may act reciprocally in pancreatic islets and in other tissues. In the beta cell this relationship may be essential in coordinating consumption of ATP in the stimulated, as opposed to the rest, state.  相似文献   

13.
Both dibutyryl cAMP and carbachol stimulated amylase are released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 μM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 μM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

14.
15.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1–34 human parathyroid hormone fragment (0.5 μg/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the ‘crossover’ plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

16.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

17.
It is important to identify the signal transduction pathway involved in the regulation of fluid reabsorption by the ductuli efferentes of the testis because they reabsorb most of the fluid leaving the testis and are essential for male fertility. Microperfusion studies of the ducts in vivo showed that 0.1 or 1.0 mM dibutyryl (db)-cGMP in the perfusate had no effect on fluid reabsorption, but 0.1 mM db-cAMP significantly reduced fluid reabsorption, 0.25 mM abolished reabsorption, and 0.5-1.0 mM caused secretion. The inhibitory effect of db-cAMP was reversible. Although the presence of db-cAMP in the perfusate did not affect the concentration of Na+ in the collectate, the concentrations of K(+) and Cl(-) increased, indicating that their transport is at least partly regulated by cAMP. Including the phosphodiesterase inhibitor pentoxifylline in the perfusate decreased fluid reabsorption by the ducts in a dose-dependent manner, and it also increased the concentration of cAMP (5.5-fold) in collectate. Pentoxifylline also increased the production of cAMP (4-fold) by ducts incubated in vitro. It is concluded that cAMP, but probably not cGMP, is an intracellular messenger regulating fluid reabsorption in the efferent ducts.  相似文献   

18.
Large (greater than 22 microns) and small (12-21 microns) luteal cells from Day 8 pregnant rats were separated by elutriation after enzyme dissociation. Aliquots of cells were incubated for 4 h at 37 degrees C in Medium 199 alone (control) or with medium containing dibutyryl cyclic adenosine 3', 5'-monophosphate (cAMP) at 0.5 mM or 5 mM; rat luteinizing hormone (LH) at doses of 1, 10, 100, or 1000 ng/ml; 10 micrograms/ml 25-OH-cholesterol; or 10 ng/ml testosterone. Production of progesterone, testosterone, and estradiol was measured by radioimmunoassay. Both cell types showed a similar increase in estradiol synthesis when stimulated with LH (1 microgram/ml) or dibutyryl cAMP (5 mM); however, large luteal cells aromatized exogenous testosterone, whereas small luteal cells did not. Large luteal cells produced increased amounts of progesterone at lower doses of dibutyryl cAMP (0.5 mM) and LH (10 ng/ml), compared to small cells, which required 5 mM dibutyryl cAMP or 1 microgram/ml LH for minimal stimulation. Dibutyryl cAMP (5 mM) also resulted in an increase of testosterone release from small luteal cells. Progesterone synthesis in both cell types was enhanced by 25-OH-cholesterol. These results suggest that the two cell types differ functionally with respect to steroidogenesis during pregnancy, and that the large luteal cells appear to be the primary site of progesterone and estradiol production at this stage of pregnancy.  相似文献   

19.
Effects of lanthanum on calcium-dependent phenomena in human red cells.   总被引:4,自引:0,他引:4  
Lanthanum (0.25 mM) does not penetrate into fresh or Mg2+-depleted cells, whereas it does into ATP-depleted or ATP + 2,3-diphosphoglycerate-depleted cells, into cells containing more than 3 mM calcium, or cells stored for more than 4 weeks in acid/citrate/dextrose solution. In fresh cells loaded with calcium, extracellular lanthanum blocks the active Ca2+-efflux completely and inhibits (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity to about 50%. In Mg2+-depleted cells Ca2+-Ca2+ exchange is inhibited by lanthanum. Ca2+-leak is unaffected by lanthanum up to 0.25 mM concentration; higher lanthanum concentrations reduce leak rate. In NaCl medium Ca2+-leak +/ S.D. amounts to 0.28 +/ 0.08 mumol/1 of cells per min, whereas in KC1 medium to 0.15 +/ 0.04 mumol/1 of cells per min at 2.5 mM [Ca2+]e and 0.25 mM [La3+]e pH 7.1. Lanthanum inhibits Ca2+-dependent rapid K+ transport in ATP-depleted and propranolol-treated red cells, i.e. whenever intracellular calcium is below a critical level. The inhibition of the rapid K+ transport can be attributed to protein-lanthanum interactions on the cell surface, since lanthanum is effectively detached from the membrane lipids by propranolol. Lanthanum at 0.2--0.25 mM concentration has no direct effect on the morphology of red cells. The shape regeneration of Ca2+-loaded cells, however, is blocked by lanthanum owing to Ca2+-pump inhibition. Using lanthanum the transition in cell shape can be quantitatively correlated to intracellular Ca2+ concentrations.  相似文献   

20.
The effect of cAMP on ATP-induced intracellular Ca+ mobilization in cultured rat aortic smooth muscle cells was investigated. Treatment of cells for 3 min at 37 degrees C with dibutyryl cAMP, a membrane-permeable analogue of cAMP, at concentration up to 500 microM resulted in 1.5- to 1.7-fold increase in the peak cytosolic Ca2+ concentration when cells were stimulated with 3 to 200 microM ATP either in the presence or absence of extracellular Ca2+. Similar results were obtained when 0.5 mM 8-Br-cAMP or 10 microM forskolin was used instead of dibutyryl cAMP. In contrast to the Ca2+ response, dibutyryl cAMP did not affect ATP-induced formation of inositol trisphosphate (IP3). Furthermore, the dibutyryl cAMP treatment did not affect the size of the Ca2+ response elicited by 10 microM ionomycin. These results suggest that intracellular cAMP potentiates the ATP-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ store(s), rather than by increasing the ATP-induced production of IP3 or by increasing the size of the intracellular Ca2+ store. Using saponin-permeabilized cells, we have shown directly that cAMP enhances Ca2+ mobilization by potentiating the Ca2+-releasing effect of IP3 from the intracellular Ca2+ store.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号