首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.  相似文献   

2.
The association of Ca2+ ions with phospholipid bilayers was investigated using isothermal titration calorimetry. The study reveals that the binding enthalpy of these cations to bilayers formed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) depends strongly on the method of preparation of the unilamellar vesicles. Extruded vesicles lead to an exothermic association, whereas sonicated ones lead to an endothermic association. In the later case, the calorimetric signal is sensitive to the length of the sonication period. It is proposed that a reorganization of the lipid bilayers under stress, obtained with sonicated small unilamellar vesicles, contributes to the calorimetric signal upon the titration with Ca2+. The analysis of the titrations indicates that, as expected, the nature of the association of Ca2+ with negatively charged phospholipid bilayers is essentially of electrostatic nature. Using a Scatchard approach, it is found that bilayers become saturated in Ca2+ approximately when the electroneutrality of the bilayer interface is reached. Moreover, the affinity constant was reduced by the increase of the ionic strength of the aqueous buffer. It was found that the intrinsic binding constant of Ca2+ to membranes containing 30 and 50 mol% of POPG was about 11 mM-1, in a MES buffer containing 10 mM NaCl, at pH 5.6.  相似文献   

3.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

4.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

5.
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.  相似文献   

6.
Alonso A  Goñi FM  Buckley JT 《Biochemistry》2000,39(46):14019-14024
Channel formation by the bacterial toxin aerolysin follows oligomerization of the protein to produce heptamers that are capable of inserting into lipid bilayers. How insertion occurs is not understood, not only for aerolysin but also for other proteins that can penetrate membranes. We have studied aerolysin channel formation by measuring dye leakage from large unilamellar egg phosphatidylcholine vesicles containing varying amounts of other lipids. The rate of leakage was enhanced in a dose-dependent manner by the presence of phosphatidylethanolamine, diacylglycerol, cholesterol, or hexadecane, all of which are known to favor a lamellar-to-inverted hexagonal (L-H) phase transition. Phosphatidylethanolamine molecular species with low L-H transition temperatures had the largest effects on aerolysin activity. In contrast, the presence in the egg phosphatidylcholine liposomes of lipids that are known to stabilize the lamellar phase, such as sphingomyelin and saturated phosphatidylcholines, reduced the rate of channel formation, as did the presence of lysophosphatidylcholine, which favors positive membrane curvature. When two different lipids that favor hexagonal phase were present with egg PC in the liposomes, their stimulatory effects were additive. Phosphatidylethanolamine and lysophosphatidylcholine canceled each other's effect on channel formation.  相似文献   

7.
To fuse, membranes must bend. The energy of each lipid monolayer with respect to bending is minimized at the spontaneous curvature of the monolayer. Two lipids known to promote opposite spontaneous curvatures, lysophosphatidylcholine and arachidonic acid, were added to different sides of planar phospholipid membranes. Lysophosphatidylcholine added to the contacting monolayers of fusing membranes inhibited the hemifusion we observed between lipid vesicles and planar membranes. In contrast, fusion pore formation depended upon the distal monolayer of the planar membrane; lysophosphatidylcholine promoted and arachidonic acid inhibited. Thus, the intermediates of hemifusion and fusion pores in phospholipid membranes involve different membrane monolayers and may have opposite net curvatures, Biological fusion may proceed through similar intermediates.  相似文献   

8.
A method is described for reconstitution of a protein into lipid vesicles using one of the natural detergents lysophosphatidylcholine or lysophosphatidic acid. The intestinal microvillus enzyme, aminopeptidase N (EC 3.4.11.2) is incorporated into lipid vesicles prepared from a total lipid extract of the microvillus membrane. The method is based on fusion of aminopeptidase-lysophospholipid micelles with liposomes prepared by sonication. The incorporation of the protein into the lipid bilayer is analyzed by gel permeation chromatography and sucrose density gradient centrifugation. The coincidence of the protein and lipid profiles is used to evaluate protein incorporation. The incorporation is visualized by electron microscopy with negative staining. The method has the advantage of using natural detergents, lysophospholipids, which are minor but natural constituents of biological membranes. The method could be of value as a tool in studies of mechanisms of insertion of newly synthesized proteins into biological membranes.  相似文献   

9.
The work presented here demonstrates that the phenomenon of spontaneous vesiculation is not restricted to charged lipids and lipid mixtures, but occurs also in isoelectric phospholipid mixtures consisting of egg phosphatidylcholine (EPC) and egg lysophosphatidylcholine (lyso-EPC). 1H high-resolution NMR and freeze-fracture electron microscopy have been used to characterize the mixed EPC/lyso EPC dispersions in excess H2O. The predominant phase in these mixed phospholipid dispersions is smectic (lamellar) at least up to approximately 70% lysophosphatidylcholine. The type of phospholipid aggregate formed in excess H2O depends on the mole ratio diacyl to monoacyl phosphatidylcholine. The dispersive (lytic) action of lysophosphatidylcholine on phosphatidylcholine bilayers becomes effective at lysophospholipid contents in excess of approximately 10%. Large multilamellar liposomes are disrupted and replaced by smaller particles, mainly unilamellar vesicles. Between 30 and 70% lysophosphatidylcholine a significant proportion of the total phospholipid is present as small unilamellar vesicles (SUV) of a diameter of 23 nm (range: 20-70 nm). At even higher lysophosphatidylcholine contents the fraction of phospholipid present as small mixed micelles with a diameter smaller than about 14 nm grows at the expense of the vesicular structures. There is a second effect of increasing the quantity of lysophosphatidylcholine in phosphatidylcholine bilayers: the presence of lysophosphatidylcholine in excess of 10% renders the phospholipid bilayer more permeable to ions as compared to pure phosphatidylcholine bilayers. The key factor in inducing spontaneous vesiculation is probably not the charge but the wedge-like shape of the lysophospholipid molecule. The molecular shape may give rise to an asymmetric distribution of lysophosphatidylcholine between the two halves of the bilayer, thus stabilizing highly curved bilayers as present in SUV.  相似文献   

10.
1. On incubation with the isolated rat submaxillary gland plasma membranes, [1-14C]palmitoyl-CoA was incorporated mainly into phosphatidylcholine and hydrolysed to [1-14C]palmitic acid and CoASH. 2. The addition of lysophosphatidylcholine enhanced the incorporation into phosphatidylcholine and lowered the hydrolysis of palmitoyl-CoA markedly. 3. In the presence of lysophosphatidylcholine, palmitoyl-CoA incorporation into phosphatidylcholine was maximum at 0.1 mM palmitoyl-CoA, 0.5 mM lysophosphatidylcholine and between pH 7.0 and 9.0. 4. The incorporation into phosphatidylcholine was stimulated by Na+, K+ and K-, inhibited by Ca2+ and Mg2+ and unaffected by sodium deoxycholate and ATP. 5. Epinephrine inhibited the incorporation of palmitoyl-CoA into phosphatidylcholine in the presence or absence of ATP, the inhibition being more in the presence of ATP than in its absence. Dibutyryl adenosine 3':5'-monophosphate mimicked the inhibitory effect of epinephrine.  相似文献   

11.
Oxyopinins (Oxki1 and Oxki2) are antimicrobial peptides isolated from the crude venom of the wolf spider Oxyopes kitabensis. The effect of oxyopinins on lipid bilayers was investigated using high-sensitivity titration calorimetry and (31)P solid-state NMR spectroscopy. High-sensitivity titration calorimetry experiments showed that the binding of oxyopinins was exothermic, and the binding enthalpies (DeltaH) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) small unilamellar vesicles (SUVs) were -18.1 kcal/mol and -15.0 kcal/mol for Oxki1 and Oxki2, respectively, and peptide partition coefficient (K(p)) was found to be 3.9x10(3) M(-1). (31)P NMR spectra of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes in the presence of oxyopinins indicated that they induced a positive curvature in lipid bilayers. The induced positive curvature was stronger in the presence of Oxki2 than in the presence of Oxki1. (31)P NMR spectra of phosphaditylcholine (PC) membranes in the presence of Oxki2 showed that Oxki2 produced micellization of membranes at low peptide concentrations, but unsaturated PC membranes or acidic phospholipids prevented micellization from occurring. Furthermore, (31)P NMR spectra using membrane lipids from E. coli suggested that Oxki1 was more disruptive to bacterial membranes than Oxki2. These results strongly correlate to the known biological activity of the oxyopinins.  相似文献   

12.
The interaction of human serum apolipoprotein A-I with dimyristoylphosphatidylglycerol was analyzed by isothermal titration calorimetry. Binding of the apolipoprotein A-I to large unilamellar vesicles of dimyristoylphosphatidylglycerol, a negatively charged phospholipid, is characterized by thermodynamic parameters which are invariant over the 30-40 degrees C temperature range. The enthalpy change resulting from the first additions of lipid are positive and decline in magnitude with subsequent additions of lipid. After several additions of lipid, the sign of the enthalpy changes to negative and then reaches a constant value/injection. This exothermic process is larger and opposite in sign to the heat of dilution. Similar behavior is also observed when the lipid is in the form of a dispersion in distilled water. Only a non-saturable exothermic process is observed at 30 degrees C with large unilamellar vesicles of the zwitterionic lipid, dimyristoylphosphatidylcholine. The beginning of an exothermic process can also be observed prior to the larger endotherm in the first injections of large unilamellar vesicles of dimyristoylphosphatidylglycerol into the protein. We analyze the enthalpy changes for the reaction of dimyristoylphosphatidylglycerol with the protein as arising from two distinct processes, one endothermic and the other exothermic. The binding isotherms for the high affinity binding of the apolipoprotein A-I to large unilammelar vesicles of dimyristoylphosphatidylglycerol, over the temperature range 30-40 degrees C, gave an enthalpy change of 1.43 +/- 0.07 kcal/mol of protein and a free energy change of -5.91 +/- 0.04 kcal/mol of protein for the binding of the protein to a cluster of 25 +/- 2 lipid molecules. Thus this reaction is entropically driven.  相似文献   

13.
Cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS) are used to investigate the association of amphiphilic polymers consisting of a double-chain hydrophobic tail attached onto poly(ethylene glycol) (PEG) polymer chains into two different systems of equilibrium vesicles. For cetyltrimethylammonium bromide (CTAB)/sodium perfluorohexanoate (FC(5)) vesicle bilayers, the size distribution of the vesicles slightly becomes narrow in the presence of the polymers, suggesting that the wedge-shaped polymers increase the spontaneous curvature of the vesicles. In contrast, the confinement of polymer molecules inside the CTAB/sodium perfluorooctanoate (FC(7)) vesicles that are stabilized by spontaneous curvature causes an abrupt decrease in the bilayer rigidity. By an analysis of vesicle size distribution, it is found that the membrane elasticity of CTAB/FC(7) vesicles is varied considerably from 6k(B)T to 0.3k(B)T, implying the transition of stabilization mechanism from spontaneous curvature to thermal fluctuation in the presence of polymer. The polymer incorporation mechanism into the bilayers is understood, in the comparison of the vesicle radius and size distribution before and after adding polymer, as that the polymer is anchored into the vesicle bilayer owing to hydrophobic property after the adsorption on the surface of the bilayer.  相似文献   

14.
Here, we examine the different mechanisms of poly(ethylene glycol)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine (DOPE)/sphingomyelin/cholesterol in a molar ratio of 35:30:15:20 at pH 7.4 versus pH 5. In doing so, we test the hypothesis that fusion of this lipid mixture should be influenced by differences in hydration of DOPE at these two pH values. An examination of the literature reveals that DOPE should be less hydrated at pH 5 (where influenza virus particles fuse with endosome membranes) than at pH 7.4 (where synaptic vesicles or HIV virus particles fuse with plasma membrane). Ensemble kinetic experiments revealed substantial differences in fusion of this plasma membrane mimetic system at these two pH values. The most dramatic difference was the observation of two intermediates at pH 5 but loss of one of these fusion intermediates at pH 7.4. Analysis of data collected at several temperatures also revealed that formation of the initial fusion intermediate (stalk) was favored at pH 7.4 due to increased activation entropy. Our observations support the hypothesis that the different negative intrinsic curvature of DOPE can account for different fusion paths and activation thermodynamics in steps of the fusion process at these two pH values. Finally, the effects of 2 mol % hexadecane on fusion at both pH values seemed to have similar origins for step 1 (promotion of acyl chain or hydrocarbon excursion into interbilayer space) and step 3 (reduction of interstice energy leading to expansion to a critical stalk radius). Different hexadecane effects on activation thermodynamics at these two pH values can also be related to altered DOPE hydration. The results support our kinetic model for fusion and offer insight into the critical role of phosphatidylethanolamine in fusion.  相似文献   

15.
K Lohner  A F Esser 《Biochemistry》1991,30(26):6620-6625
The thermotropic behavior of purified human complement protein C9 was investigated by high-sensitivity differential scanning calorimetry. When dissolved in physiological buffers (pH 7.2, 150 mM NaCl), C9 underwent three endothermic transitions with transition temperatures (Tm) centered at about 32, 48, and 53 degrees C, respectively, and one exothermic transition above 64 degrees C that correlated with protein aggregation. The associated calorimetric enthalpies of the three endothermic transitions were about 45, 60, and 161 kcal/mol with cooperative ratios (delta Hcal/delta HvH) close to unity. The total calorimetric enthalphy for the unfolding process was in the range of 260-280 kcal/mol under all conditions. The exothermic aggregation temperature was strongly pH dependent, changing from 60 degrees C at pH 6.6 to 81.4 degrees C at pH 8.0, whereas none of the three endothermic transitions was significantly affected by pH changes. They were, however, sensitive to addition of calcium ions; most affected was Tm1 which shifted from 32 to 35.8 degrees C in the presence of 3 mM calcium, i.e., the normal blood concentration. Kosmotropic ions stabilized the protein by shifting the endothermic transitions to slightly higher temperatures whereas inclusion of chaotropic ions (such as choline), removal of bound calcium by addition of EDTA, or proteolysis with thrombin lowered the transition temperatures. Previous studies had indicated the formation of at least three different forms of C9 during membrane insertion or during heat polymerization, and it is suggested that the three endothermic transitions reflect the formation of such C9 conformers. Choline, which is present at high concentrations on the surface of biological membranes, and calcium ions have the ability to shift the transition temperatures of the first two transitions to be either close to or below body temperature. Thus, it is very likely that C9 is present in vivo in a partially unfolded state when bound to a membrane surface, and we propose that this facilitates membrane insertion and refolding of the protein into an amphiphilic conformation.  相似文献   

16.
An assay is presented that allows continuous and sensitive monitoring of membrane fusion in both artificial and biological membrane systems. The method relies upon the relief of fluorescence self-quenching of octadecyl Rhodamine B chloride. When the probe is incorporated into a lipid bilayer at concentrations up to 9 mol% with respect to total lipid, the efficiency of self-quenching is proportional to its surface density. Upon fusion between membranes labeled with the probe and nonlabeled membranes, the decrease in surface density of the fluorophore results in a concomitant, proportional increase in fluorescence intensity, allowing kinetic and quantitative measurements of the fusion process. The kinetics of fusion between phospholipid vesicles monitored with this assay were found to be the same as those determined with a fusion assay based on resonance energy transfer [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099]. Octadecyl Rhodamine B chloride can be readily inserted into native biological membranes by addition of an ethanolic solution of the probe. Evidence is presented showing that the dilution of the fluorophore, occurring when octadecyl Rhodamine containing influenza virus is mixed with phospholipid vesicles at pH 5.0, but not pH 7.4, resulted from virus-vesicle fusion and was not related to processes other than fusion. Furthermore, by use of this method, the kinetics of fusion between Sendai virus and erythrocyte ghosts and virus-induced fusion of ghosts were readily revealed. Dilution of the probe was not observed upon prior treatment of fluorescently labeled Sendai virus with trypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
W Berner  R Kinne    H Murer 《The Biochemical journal》1976,160(3):467-474
Uptake of Pi into brush-border membrane vesicles isolated from rat small intestine was investigated by a rapid filtration technique. The following results were obtained. 1. At pH 7.4 in the presence of a NaCl gradient across the membrane (sodium concentration in the medium higher than sodium concentration in the vesicles), phosphate was taken up by a saturable transport system, which was competitively inhibited by arsenate. Phosphate entered the same osmotically reactive space as D-glucose, which indicates that transport into the vesicles rather than binding to the membranes was determined. 2. The amount of phosphate taken up initially was increased about fourfold by lowering the pH from 7.4 to 6.0.3. When Na+ was replaced by K+, Rb+ or Cs+, the initial rate of uptake decreased at pH 7.4 but was not altered at pH 6.0.4. Experiments with different anions (SCN-,Cl-, SO42-) and with ionophores (valinomycin, monactin) showed that at pH 7.4 phosphate transport in the presence of a Na+ gradient is almost independent of the electrical potential across the vesicle membrane, whereas at pH 6.0 phosphate transport involves the transfer of negative charge. It is concluded that intestinal brush-border membranes contain a Na+/phosphate co-transport system, which catalyses under physiological conditions an electroneutral entry of Pi and Na+ into the intestinal epithelial cell. In contrast with the kidney, probably univalent phosphate and one Na+ ion instead of bivalent phosphate and two Na+ ions are transported together.  相似文献   

18.
Bending elasticity is an important property of lipid vesicles, non-lamellar lipid phases and biological membranes. Experimental values of the mean curvature moduli, k(c), of lipid bilayers and of the monolayer leaflets of inverted hexagonal (H(II)) phases of lipids are tabulated here for easy reference. Experimental estimates of the Gaussian curvature modulus, k (c), are also included. Consideration is given to the relation between the bending moduli of bilayers and the constituent monolayer leaflets. Useful mathematical relations involving the bending moduli and spontaneous curvature are summarized.  相似文献   

19.
Several mechanisms for cell cholesterol efflux have been proposed, including membrane microsolubilization, suggesting that the existence of specific domains could enhance the transfer of lipids to apolipoproteins. In this work isothermal titration calorimetry, circular dichroism spectroscopy, and two-photon microscopy are used to study the interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl, 2-oleoyl phosphatidylcholine (POPC) and sphingomyelin (SM), with and without cholesterol. Below 30 degrees C the calorimetric results show that apoA-I interaction with POPC/SM SUVs produces an exothermic reaction, characterized as nonclassical hydrophobic binding. The heat capacity change (DeltaCp degrees ) is small and positive, whereas it was larger and negative for pure POPC bilayers, in the absence of SM. Inclusion of cholesterol in the membranes induces changes in the observed thermodynamic pattern of binding and counteracts the formation of alpha-helices in the protein. Above 30 degrees C the reactions are endothermic. Giant unilamellar vesicles (GUVs) of identical composition to the SUVs, and two-photon fluorescence microscopy techniques, were utilized to further characterize the interaction. Fluorescence imaging of the GUVs indicates coexistence of lipid domains under 30 degrees C. Binding experiments and Laurdan generalized-polarization measurements suggest that there is no preferential binding of the labeled apoA-I to any particular domain. Changes in the content of alpha-helix, binding, and fluidity data are discussed in the framework of the thermodynamic parameters.  相似文献   

20.
The antibacterial peptide PGLa exerts its activity by permeabilizing bacterial membranes whereas eukaryotic membranes are not affected. To provide insight into the selectivity and the permeabilization mechanism, the binding of PGLa to neutral and negatively charged model membranes was studied with high-sensitivity isothermal titration calorimetry (ITC), circular dichroism (CD), and solid-state deuterium nuclear magnetic resonance ((2)H NMR). The binding of PGLa to negatively charged phosphatidylcholine (PC)/phosphatidylglycerol (PG) (3:1) vesicles was by a factor of approximately 50 larger than that to neutral PC vesicles. The negatively charged membrane accumulates the cationic peptide at the lipid-water interface, thus facilitating the binding to the membrane. However, if bulk concentrations are replaced by surface concentrations, very similar binding constants are obtained for neutral and charged membranes (K approximately 800-1500 M(-)(1)). Membrane selectivity is thus caused almost exclusively by electrostatic attraction to the membrane surface and not by hydrophobic insertion. Membrane insertion is driven by an exothermic enthalpy (DeltaH approximately -11 to -15 kcal/mol) but opposed by entropy. An important contribution to the binding process is the membrane-induced random coil --> alpha-helix transition of PGLa. The peptide is random coil in solution but adopts an approximately 80% alpha-helical conformation when bound to the membrane. Helix formation is an exothermic process, contributing approximately 70% to the binding enthalpy and approximately 30% to the free energy of binding. The (2)H NMR measurements with selectively deuterated lipids revealed small structural changes in the lipid headgroups and in the hydrocarbon interior upon peptide binding which were continuous over the whole concentration range. In contrast, isothermal titration calorimetry of PGLa solutions with PC/PG(3:1) vesicles gave rise to two processes: (i) an exothermic binding of PGLa to the membrane followed by (ii) a slower endothermic process. The latter is only detected at peptide-to-lipid ratios >17 mmol/mol and is paralleled by the induction of membrane leakiness. Dye efflux measurements are consistent with the critical limit derived from ITC measurements. The endothermic process is assigned to peptide pore formation and/or lipid perturbation. The enthalpy of pore formation is 9.7 kcal/mol of peptide. If the same excess enthalpy is assigned to the lipid phase, the lipid perturbation enthalpy is 180 cal/mol of lipid. The functional synergism between PGLa and magainin 2 amide could also be followed by ITC and dye release experiments and is traced back to an enhanced pore formation activity of a peptide mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号