首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structure of the cytochrome c2, isolated from the purple photosynthetic bacterium Rhodobacter capsulatus, has been solved to a nominal resolution of 2.5 A and refined to a crystallographic R-factor of 16.8% for all observed X-ray data. Crystals used for this investigation belong to the space group R32 with two molecules in the asymmetric unit and unit cell dimensions of a = b = 100.03 A, c = 162.10 A as expressed in the hexagonal setting. An interpretable electron density map calculated at 2.5 A resolution was obtained by the combination of multiple isomorphous replacement with four heavy atom derivatives, molecular averaging and solvent flattening. At this stage of the structural analysis the electron densities corresponding to the side-chains are well ordered except for several surface lysine, glutamate and aspartate residues. Like other c-type cytochromes, the secondary structure of the protein consists of five alpha-helices forming a basket around the heme prosthetic group with one heme edge exposed to the solvent. The overall alpha-carbon trace of the molecule is very similar to that observed for the bacterial cytochrome c2, isolated from Rhodospirillum rubrum, with the exception of a loop, delineated by amino acid residues 21 to 32, that forms a two stranded beta-sheet-like motif in the Rb. capsulatus protein. As observed in the eukaryotic cytochrome c proteins, but not in the cytochrome c2 from Rsp. rubrum, there are two evolutionarily conserved solvent molecules buried within the heme binding pocket.  相似文献   

2.
Structure of rice ferricytochrome c at 2.0 A resolution   总被引:7,自引:0,他引:7  
The crystal structure of ferricytochrome c from rice embryos has been solved by X-ray diffraction to a resolution of 2.0 A, applying a single isomorphous replacement method with anomalous scattering effects. The initial molecular model was built on a graphics display system and was refined by the Hendrickson and Konnert method. The R factor was reduced to 0.25. Rice cytochrome c consists of III amino acid residues. In comparison with animal cytochromes c, the peptide chain extends for eight residues at the N-terminal end, which is characteristic for plant cytochromes c. These additional residues display a collagen-like conformation and an irregular reverse turn, and are located around the C-terminal alpha-helix on the surface or the rear side of the molecule. Two hydrogen bonds between the carbonyl oxygen of the N-terminal acetyl group and O eta of Tyr65, and between the peptide carbonyl oxygen of Pro-1 and O epsilon 1 of Gln89, are involved in holding these eight residues on the molecular surface, where Tyr65 and Gln89 are invariant in plant cytochromes c. Except for the extra eight residues, the main-chain conformations of both rice and tuna cytochromes c are essentially identical, though small local conformational differences are found at residues 24, 25, 56 and 57.  相似文献   

3.
The crystal structure of recombinant rabbit interferon-gamma was solved by the multiple isomorphous replacement technique at 2.7-A resolution and refined to a crystallographic R-factor of 26.2%. The interferon crystallizes with one-half of the functional dimer in the asymmetric unit, with the two polypeptide chains of the dimer related by a crystallographic 2-fold symmetry axis. The structure is predominantly alpha-helical with extensive interdigitation of the alpha-helical segments of the two polypeptide chains.  相似文献   

4.
The three-dimensional structure of alginate lyase A1-III (ALYIII) from a Sphingomonas species A1 was determined by X-ray crystallography. The enzyme was crystallized by the hanging-drop vapour-diffusion method in the presence of 49% ammonium sulfate at 20 degrees C. The crystals are monoclinic and belong to the space group C2 with unit cell dimensions of a=49.18 A, b=93.08 A, c=82.10 A and beta=104.12 degrees. There was one molecule of alginate lyase in the asymmetric unit of the crystal. The diffraction data up to 1. 71 A were collected with Rsymof 5.0%. The crystal structure of ALYIII was solved by the multiple isomorphous replacement method and refined at 1.78 A resolution using X-PLOR with a final R -factor of 18.0% for 10.0 to 1.78 A resolution data. The refined model of ALYIII contained 351 amino acid residues, 299 water molecules and two sulfate ions. The three-dimensional structure of ALYIII was abundant in helices and had a deep tunnel-like cleft in a novel (alpha6/alpha5)-barrel structure, which was similar to the (alpha6/alpha6)-barrel found in glucoamylase and cellulase. This structure presented the possibility that alginate molecules might penetrate into the cleft to interact with the catalytic site of ALYIII.  相似文献   

5.
NADH peroxidase (EC 1.11.1.1) previously isolated from Streptococcus faecalis 10C1 has been crystallized. The crystal structure has been solved by multiple isomorphous replacement and solvent-flattening at 3.3 A (1 A = 0.1 nm) resolution. The enzyme forms a tetramer consisting of 4 crystallographically related subunits. The monomer chain fold is in general similar to those of glutathione reductase and lipoamide dehydrogenase. FAD binds in the same region and in a similar conformation as in glutathione reductase. The unusual cysteine-sulfenic acid participating in catalysis is located at the isoalloxazine of FAD.  相似文献   

6.
The X-ray structure of methanol dehydrogenase (MEDH) from Paracoccus denitrificans (MEDH-PD) was determined at 2.5 A resolution using molecular replacement based on the structure of MEDH from Methylophilus methylotrophus W3A1 (MEDH-WA). The overall structures from the two bacteria are similar to each other except that the former has a longer C-terminal tail in each subunit and shows local differences in several insertion regions. The "X-ray sequence" of the segment alphaGly444-alphaLeu452 was established, including one insertion and seven replacements compared with the reported sequence. The primary electron acceptor of MEDH-PD is cytochrome c-551i (Cyt c551i). Based on the crystal structure of MEDH-PD and of the published structure of Cyt c551i, their interactions were investigated by molecular modeling. As a guide and starting point, the covalently attached cytochrome and PQQ domains of the alcohol dehydrogenase from Pseudomonas putida HK5 (ADH2B) were used. In the modeling, two molecules of Cyt c551i could be accommodated in their interaction with the MEDH heterotetramer in accordance with the two-fold molecular symmetry of the latter. Two models are proposed, in both of which electrostatic and hydrogen bonding interactions make major contributions to inter-protein binding. One of these models involves salt bridges from alphaArg99 of MEDH to the heme propionic acids of Cyt c551i and the other involves salt bridges from alphaArg426 of MEDH to Glu112 of Cyt c551i. Both involve salt bridges from alphaLys93 of MEDH to Asp75 of Cyt c551i. The size and nature of the cytochrome/quinoprotein heterodimer interfaces and calculations of electronic coupling and electron transfer rates favor one of these models over the other.  相似文献   

7.
The variant surface glycoprotein (VSG) of Trypanosoma brucei forms a coat on the surface of the parasite; by the expression of a series of antigenically distinct VSGs in the surface coat the parasite escapes the host immune response. The 2.9 A resolution crystal structure of the N-terminal domain of one variant, MITat 1.2, has been determined. The structure was solved using data collected from two crystal forms. Initially a partial model was built into an electron density map based on multiple isomorphous replacement phases and improved by phase combination methods. Subsequently this model was used to obtain the molecular replacement solution for a second crystal form, providing starting phases which were refined using 2-fold non-crystallographic symmetry averaging. The current model includes 362 residues and has been refined using X-PLOR to an R value of 0.22 for data between 7 and 2.9 A. The molecule is a dimer, approximately 100 A long, having an asymmetrical cross section with maximum dimensions of approximately 40 A x 60 A. Two long, approximately 70 A, alpha-helices from each monomer pack together to form, with several other helices, a core helix bundle that extends nearly the full length of the molecule. The "top" of the protein, which in the surface coat may be exposed to the external environment, is formed from the ends of the two long helices, a short three-stranded beta-sheet, and a strand having irregular conformation that packs above these secondary structure elements. Two conserved disulfide bridges are in this part of the molecule. Several elements of the MITat 1.2 sequence, which contribute to the formation of the helix bundle structure, have been identified. These elements can be found in the sequences of several different VSGs, suggesting that to some extent the VSG structure is conserved in those variants.  相似文献   

8.
The crystal structure of thermitase from Thermoactinomyces vulgaris has been determined by x-ray diffraction at 2.2 A resolution. The structure was solved by a combination of single isomorphous replacement and molecular replacement methods. The structure was refined to a conventional R factor of 0.24 using restrained least square procedures CORELS and PROLSQ. The tertiary structure of thermitase is similar to that of subtilsin BPN'. The greatest differences between these structures are related to the insertions and deletions in the sequence.  相似文献   

9.
This article reports the first X-ray structure of the soluble form of a c-type cytochrome isolated from a Gram-positive bacterium. Bacillus pasteurii cytochrome c(553), characterized by a low reduction potential and by a low sequence homology with cytochromes from Gram-negative bacteria or eukaryotes, is a useful case study for understanding the structure-function relationships for this class of electron-transfer proteins. Diffraction data on a single crystal of cytochrome c(553) were obtained using synchrotron radiation at 100 K. The structure was determined at 0.97-A resolution using ab initio phasing and independently at 1.70 A in an MAD experiment. In both experiments, the structure solution exploited the presence of a single Fe atom as anomalous scatterer in the protein. For the 0.97-A data, the phasing was based on a single data set. This is the most precise structure of a heme protein to date. The crystallized cytochrome c(553) contains only 71 of the 92 residues expected from the intact protein sequence, lacking the first 21 amino acids at the N-terminus. This feature is consistent with previous evidence that this tail, responsible for anchoring the protein to the cytoplasm membrane, is easily cleaved off during the purification procedure. The heme prosthetic group in B. pasteurii cytochrome c(553) is surrounded by three alpha-helices in a compact arrangement. The largely exposed c-type heme group features a His-Met axial coordination of the Fe(III) ion. The protein is characterized by a very asymmetric charge distribution, with the exposed heme edge located on a surface patch devoid of net charges. A structural search of a representative set of protein structures reveals that B. pasteurii cytochrome c(553) is most similar to Pseudomonas cytochromes c(551), followed by cytochromes c(6), Desulfovibrio cytochrome c(553), cytochromes c(552) from thermophiles, and cytochromes c from eukaryotes. Notwithstanding a low sequence homology, a structure-based alignment of these cytochromes shows conservation of three helical regions, with different additional secondary structure motifs characterizing each protein. In B. pasteurii cytochrome c(553), these motifs are represented by the shortest interhelix connecting fragments observed for this group of proteins. The possible relationships between heme solvent accessibility and the electrochemical reduction potential are discussed.  相似文献   

10.
The crystal structure of the small, mostly helical alpha domain of the AAA+ module of the Escherichia coli ATP-dependent protease Lon has been solved by single isomorphous replacement combined with anomalous scattering and refined at 1.9A resolution to a crystallographic R factor of 17.9%. This domain, comprising residues 491-584, was obtained by chymotrypsin digestion of the recombinant full-length protease. The alpha domain of Lon contains four alpha helices and two parallel strands and resembles similar domains found in a variety of ATPases and helicases, including the oligomeric proteases HslVU and ClpAP. The highly conserved "sensor-2" Arg residue is located at the beginning of the third helix. Detailed comparison with the structures of 11 similar domains established the putative location of the nucleotide-binding site in this first fragment of Lon for which a crystal structure has become available.  相似文献   

11.
The crystal structure of beta-lactamase TEM1 from E. coli has been solved to 2.5 A resolution by X-ray diffraction methods and refined to a crystallographic R-factor of 22.7%. The structure was determined by multiple isomorphous replacement using four heavy atom derivatives. The solution from molecular replacement, using a polyalanine model constructed from the C alpha coordinates of S. Aureus PCl enzyme, provided a set of phases used for heavy atom derivatives analysis. The E. coli beta-lactamase TEM1 is made up of two domains whose topology is similar to that of the PCl enzyme. However, global superposition of the two proteins shows significant differences.  相似文献   

12.
The ionic strength dependence of the electron self-exchange rate constants of cytochromes c, c551, and b5 has been analyzed in terms of a monopole-dipole formalism (van Leeuwen, J.W. 1983. Biochim. Biophys. Acta. 743:408-421). The dipole moments of the reduced and oxidized forms of Ps. aeruginosa cytochrome c551 are 190 and 210 D, respectively (calculated from the crystal structure). The projections of these on the vector from the center of mass through the exposed heme edge are 120 and 150 D. For cytochrome b5, the dipole moments calculated from the crystal structure are 500 and 460 D for the reduced and oxidized protein; the projections of these dipole moments through the exposed heme edge are -330 and -280 D. A fit of the ionic strength dependence of the electron self-exchange rate constants gives -280 (reduced) and -250 (oxidized) D for the center of mass to heme edge vector. The self-exchange rate constants extrapolated to infinite ionic strength of cytochrome c, c551, and b5 are 5.1 x 10(5), 2 x 10(7), and 3.7 x 10(5) M-1 s-1, respectively. The extension of the monopole-dipole approach to other cytochrome-cytochrome electron transfer reactions is discussed. The control of electron transfer by the size and shape of the protein is investigated using a model which accounts for the distance of the heme from each of the surface atoms of the protein. These calculations indicate that the difference between the electrostatically corrected self-exchange rate constants of cytochromes c and c551 is due only in part to the different sizes and heme exposures of the two proteins.  相似文献   

13.
A ternary electron transfer protein complex has been crystallized and a preliminary structure investigation has been carried out. The complex is composed of a quinoprotein, methylamine dehydrogenase (MADH), a blue copper protein, amicyanin, and a c-type cytochrome (c551i). All three proteins were isolated from Paracoccus denitrificans. The crystals of the complex are orthorhombic, space group C222(1) with cell dimensions a = 148.81 A, b = 68.85 A, and c = 187.18 A. Two types of isomorphous crystals were prepared: one using native amicyanin and the other copper-free apo-amicyanin. The diffraction data were collected at 2.75 A resolution from the former and at 2.4 A resolution from the latter. The location of the MADH portion was determined by molecular replacement. The copper site of the amicyanin molecule was located in an isomorphous difference Fourier while the iron site of the cytochrome was found in an anomalous difference Fourier. The MADH from P. denitrificans (PD-MADH) is an H2L2 hetero-tetramer with the H subunit containing 373 residues and the L subunit 131 residues, the latter containing a novel redox cofactor, tryptophan tryptophylquinone (TTQ). The amicyanin of P. denitrificans contains 105 residues and the cytochrome c551i contains 155 residues. The ternary complex consists of one MADH tetramer with two molecules of amicyanin and two of c551i, forming a hetero-octamer; the octamer is located on a crystallographic diad. The relative positions of the three redox centers--i.e., the TTQ of MADH, the copper of amicyanin, and the heme group of c55li--are presented.  相似文献   

14.
The N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) is used on an industrial scale for the production of D-amino acids. The crystal structure of D-NCAase was solved by multiple isomorphous replacement with anomalous scattering using xenon and gold derivatives, and refined to 1.95 A resolution, to an R-factor of 18.6 %. The crystal structure shows a four-layer alpha/beta fold with two six-stranded beta sheets packed on either side by two alpha helices. One exterior layer faces the solvent, whereas the other one is buried and involved in the tight intersubunit contacts. A long C-terminal fragment extends from a monomer to a site near a dyad axis, and associates with another monomer to form a small and hydrophobic cavity, where a xenon atom can bind. Site-directed mutagenesis of His129, His144 and His215 revealed strict geometric requirements of these conserved residues to maintain a stable conformation of a putative catalytic cleft. A region located within this cleft involving Cys172, Glu47, and Lys127 is proposed for D-NCAase catalysis and is similar to the Cys-Asp-Lys site of N-carbamoylsarcosine amidohydrolase. The homologous active-site framework of these enzymes with distinct structures suggests convergent evolution of a common catalytic mechanism.  相似文献   

15.
The three-dimensional crystal structure of catalase from Micrococcus lysodeikticus has been solved by multiple isomorphous replacement and refined at 1.5 A resolution. The subunit of the tetrameric molecule of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues and one haem group. The crystals belong to space group P4(2)2(1)2 with unit cell parameters a = b = 106.7 A, c = 106.3 A, and there is one subunit of the tetramer per asymmetric unit. The amino acid sequence has been tentatively determined by computer graphics model building and comparison with the known three-dimensional structure of beef liver catalase and sequences of several other catalases. The atomic model has been refined by Hendrickson and Konnert's least-squares minimisation against 94,315 reflections between 8 A and 1.5 A. The final model consists of 3,977 non-hydrogen atoms of the protein and haem group, 426 water molecules and one sulphate ion. The secondary and tertiary structures of the bacterial catalase have been analyzed and a comparison with the structure of beef liver catalase has been made.  相似文献   

16.
The octadeoxyribonucleotide d(CGCICICG) has been crystallized in space group P(6)5(22) with unit cell dimensions of a = b = 31.0 A and c = 43.7 A, and X-ray diffraction data have been collected to 1.5-A resolution. Precession photographs and the self-Patterson function indicate that 12 base pairs of Z-conformation DNA stack along the c-axis, and the double helices pack in a hexagonal array similar to that seen in other crystals of Z-DNA. The structure has been solved by both Patterson deconvolution and molecular replacement methods and refined in space group P(6)5 to an R factor of 0.225 using 2503 unique reflections greater than 3.0 sigma (F). Comparison of the molecules within the hexagonal lattice with highly refined crystal structures of other Z-DNA reveals only minor conformational differences, most notably in the pucker of the deoxyribose of the purine residues. The DNA has multiple occupancy of C:I and C:G base pairs, and C:I base pairs adopt a conformation similar to that of C:G base pairs.  相似文献   

17.
The crystal structure of oxidized cytochrome c from tuna hearts has been solved by x-ray diffraction to a resolution of 2.0 A, using four isomorphous heavy atom derivatives. The crystals, space group P43, have 2 independent cytochrome molecules in the asymmetric repeating unit. No significant difference is seen between these 2 molecules, aside from conformations of a few surface side chains. The molecular folding observed is essentially that reported for tuna ferrocytochrome c. In particular, the ring of phenylalanine 83 lies against the heme group and closes the heme crevice, and is not swung out into the surroundings as had been believed from the 2.8 A horse ferricytochrome c structure.  相似文献   

18.
BACKGROUND: The fungal oxidoreductase cellobiose dehydrogenase (CDH) degrades both lignin and cellulose, and is the only known extracellular flavocytochrome. This haemoflavoenzyme has a multidomain organisation with a b-type cytochrome domain linked to a large flavodehydrogenase domain. The two domains can be separated proteolytically to yield a functional cytochrome and a flavodehydrogenase. Here, we report the crystal structure of the cytochrome domain of CDH. RESULTS: The crystal structure of the b-type cytochrome domain of CDH from the wood-degrading fungus Phanerochaete chrysosporium has been determined at 1.9 A resolution using multiple isomorphous replacement including anomalous scattering information. Three models of the cytochrome have been refined: the in vitro prepared cytochrome in its redox-inactive state (pH 7.5) and redox-active state (pH 4.6), as well as the naturally occurring cytochrome fragment. CONCLUSIONS: The 190-residue long cytochrome domain of CDH folds as a beta sandwich with the topology of the antibody Fab V(H) domain. The haem iron is ligated by Met65 and His163, which confirms previous results from spectroscopic studies. This is only the second example of a b-type cytochrome with this ligation, the first being cytochrome b(562). The haem-propionate groups are surface exposed and, therefore, might play a role in the association between the cytochrome and flavoprotein domain, and in interdomain electron transfer. There are no large differences in overall structure of the cytochrome at redox-active pH as compared with the inactive form, which excludes the possibility that pH-dependent redox inactivation results from partial denaturation. From the electron-density map of the naturally occurring cytochrome, we conclude that it corresponds to the proteolytically prepared cytochrome domain.  相似文献   

19.
The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely.The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit.The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号