首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Pseudomonas aeruginosa has two well-characterized quorum-sensing systems, Las and Rhl. These systems are composed of LuxR-type proteins, LasR and RhlR, and two acyl homoserine lactone (AHL) synthases, LasI and RhlI. LasI catalyzes the synthesis of N-(3-oxododecanoyl)homoserine lactone (3O-C12-HSL), whereas RhlI catalyzes the synthesis of N-butyryl-homoserine lactone. There is little known about the importance of AHLs in vivo and what effects these molecules have on eukaryotic cells. In order to understand the role of AHLs in vivo, we first tested the effects that deletions of the synthase genes in P. aeruginosa had on colonization of the lung. We demonstrate that in an adult mouse acute-pneumonia model, deletion of the lasI gene or both the lasI and rhlI genes greatly diminished the ability of P. aeruginosa to colonize the lung. To determine whether AHLs have a direct effect on the host, we examined the effects of 3O-C12-HSL injected into the skin of mice. In this model, 3O-C(12)-HSL stimulated a significant induction of mRNAs for the cytokines interleukin-1alpha (IL-1alpha) and IL-6 and the chemokines macrophage inflammatory protein 2 (MIP-2), monocyte chemotactic protein 1, MIP-1beta, inducible protein 10, and T-cell activation gene 3. Additionally, dermal injections of 3O-C12-HSL also induced cyclooxygenase 2 (Cox-2) expression. The Cox-2 enzyme is important for the conversion of arachidonic acid to prostaglandins and is associated with edema, inflammatory infiltrate, fever, and pain. We also demonstrate that 3O-C12-HSL activates T cells to produce the inflammatory cytokine gamma interferon and therefore potentially promotes a Th1 environment. Induction of these inflammatory mediators in vivo is potentially responsible for the significant influx of white blood cells and subsequent tissue destruction associated with 3O-C12-HSL dermal injections. Therefore, the quorum-sensing systems of P. aeruginosa contribute to its pathogenesis both by regulating expression of virulence factors (exoenzymes and toxins) and by inducing inflammation.  相似文献   

9.
群体感应是细菌根据细胞密度变化调控基因表达的一种调节机制。铜绿假单胞菌中QS系统由lasI和rhlI合成的信号分子3OC12-HSL和C4-HSL以及各自的受体蛋白LasR、RhlR组成,它们以级联方式调控多个基因表达。【目的】研究细菌群体感应(QS)对聚羟基脂肪酸酯合成的调控。【方法】利用铜绿假单胞菌PAO1及其QS突变株为材料通过气相色谱、荧光定量PCR在生理和分子水平上研究QS对聚羟基脂肪酸酯合成的调控。【结果】QS信号分子合成抑制剂阿奇霉素处理铜绿假单胞菌PAO1和QS突变株导致胞内PHA积累量显著减少;铜绿假单胞菌PAO1中C4-HSL合成酶基因rhlI缺失突变株PAO210胞内PHA积累量与野生型无差别;而3OC12-HSL合成酶基因lasI缺失突变株PAO55、3OC12-HSL受体合成酶基因lasR缺失突变株PAO56以及lasI/lasR双缺失突变株PAO57胞内PHA含量与野生型相比明显减少;lasI和lasR的突变株体内PHA合成酶基因phaC1的表达量显著降低,信号分子3OC12-HSL回补实验使phaC1的表达量可恢复到野生株水平,但只可部分恢复lasI缺失导致的胞内PHA合成。【结论】由此推测,铜绿假单胞菌群体感应系统中lasI/lasR系统参与胞内聚羟基脂肪酸酯合成的调控。  相似文献   

10.
Pseudomonas aeruginosa is a gram-negative bacterium that causes serious illnesses, particularly in immunocompromised individuals, often with a fatal outcome. The finding that the acylated homoserine lactone quorum sensing (QS) system controls the production of virulence factors in P. aeruginosa makes this system a possible target for antimicrobial therapy. It has been suggested that an N-(3-oxododecanoyl)-homoserine lactone (3O-C12-HSL) antagonist, a QS blocker (QSB), would interfere efficiently with the quorum sensing system in P. aeruginosa and thus reduce the virulence of this pathogen. In this work, a mathematical model of the QS system in P. aeruginosa has been developed. The model was used to virtually add 3O-C12-HSL antagonists that differed in their affinity for the receptor protein and for their ability to mediate degradation of the receptor. The model suggests that very small differences in these parameters for different 3O-C12-HSL antagonists can greatly affect the success of QSB based inhibition of the QS system in P. aeruginosa. Most importantly, it is proposed that the ability of the 3O-C12-HSL antagonist to mediate degradation of LasR is the core parameter for successful QSB based inhibition of the QS system in P. aeruginosa. Finally, this study demonstrates that QSBs can shift the system to a low steady state, corresponding to an uninduced state and thus, suggests that the use of 3O-C12-HSL antagonists may constitute a promising therapeutic approach against P. aeruginosa involved infections.  相似文献   

11.
12.
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.  相似文献   

13.
14.
15.
16.
17.
Quorum-sensing is an important mechanism for the regulation of bacteria-to-bacteria communication. Recent advances have demonstrated that the Pseudomonas aeruginosa signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone (3O-C(12)-HSL) is also a potent modulator of eukaryotic cells and may thus play an important role in the host response during P. aeruginosa infections. Little is known, however, about specific effects of 3O-C(12)-HSL molecules on human macrophages. To address this issue, we investigated the influence of 3O-C(12)-HSL on the phagocytic activity, production of reactive oxygen species, and activation of p38 and p42/44 MAPK signaling pathways in human macrophages. We show an effect of 3O-C(12)-HSL on the phagocytic capacity in human macrophages, which depends on concentration and time of exposure. When cells were exposed to 100 microM 3O-C(12)-HSL for 30 min or 1 h, the phagocytic activity increased 1.8 and 1.6 times, respectively. The 3O-C(12)-HSL treatments had no significant effect on the level of reactive oxygen species production. Furthermore, the p38 MAPK, but not the p42/44 MAPK, signaling pathway was activated in response to 3O-C(12)-HSL. In addition, specific blocking of p38 MAPK activation with 10 microM SB 203580 prevented the 3O-C(12)-HSL-induced increase in the phagocytic activity. These findings demonstrate that the bacterial quorum-sensing can play a significant role also in regulation of macrophage activity during infections caused by P. aeruginosa.  相似文献   

18.
Quorum sensing (QS) in a bacterial population is activated when extracellular concentration of QS signal reaches a threshold, but how this threshold is determined remains largely unknown. In this study, we report the identification and characterization of a novel anti-activator encoded by qslA in Pseudomonas aeruginosa. The null mutation of qslA elevated AHL-dependent QS and PQS signalling, increased the expression of QS-dependent genes, and enhanced the virulence factor production and pathogenicity. We further present evidence that modulation of QS by QslA is due to protein-protein interaction with LasR, which prevents LasR from binding to its target promoter. QslA also influences the threshold concentration of QS signal needed for QS activation; in the absence of qslA, QS is activated by nine times less N-3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) than that in wild type. The findings from this study depict a new mechanism that governs the QS threshold in P. aeruginosa.  相似文献   

19.
Mou R  Bai F  Duan Q  Wang X  Xu H  Bai Y  Zhang X  Jin S  Qiao M 《FEMS microbiology letters》2011,324(2):173-180
The Pseudomonas aeruginosa quorum sensing (QS) system is controlled by the signal molecules acyl homoserine lactones (AHLs) that are synthesized from acyl enoyl-acyl carrier proteins (acyl-ACPs) provided by the fatty acid biosynthesis cycle. Pfm (PA2950), an enoyl-CoA reductase, has previously been shown to affect swimming mobility and fatty acid biosynthesis. In this report, we further show that pfm influences bacterial adherence to human cells. Microarray assay results suggest that pfm affects bacterial adherence through its influence on the QS system. Further experiments confirmed that the pfm mutant strain produces significantly less QS signal molecules than the corresponding wild-type strain. Using strains Escherichia coli DH5α(pECP64, lasB'-lacZ) and E.?coli DH5α(pECP61.5, rhlA'-lacZ), biosensors for N-(3-oxododecanoyl) homoserine lactone (3O-C(12) -HSL) and N-butyryl homoserine lactone (C(4) -HSL), respectively, we found that pfm mutant strain produces decreased amounts of both signal molecules. Elastase activity and pyocyanin measurements further confirmed the reduced levels of 3O-C(12) -HSL and C(4) -HSL in the pfm mutant. Finally, bacterial virulence, as assessed by the Caenorhabditis elegans worm killing assay, is decreased in the pfm mutant. Taken together, these data indicate that pfm can be an important target for the control of P.?aeruginosa infectivity.  相似文献   

20.
Acyl-homoserine lactone (HSL) quorum sensing molecules play an important role in regulation of virulence gene expression in Pseudomonas aeruginosa. Here, we show that 3O-C(12)-HSL can disrupt barrier integrity in human epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER), increased paracellular flux, reduction in the expression and distribution of ZO-1 and occludin, and reorganization of F-actin. P. aeruginosa 3O-C(12)-HSL activate p38 and p42/44 kinases, and inhibition of these kinases partly prevented 3O-C(12)-HSL-induced changes in TER, paracellular flux and expression of occludin and ZO-1. These findings demonstrate that P. aeruginosa 3O-C(12)-HSL can modulate tight junction integrity of Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号