首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

  相似文献   


2.
3.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent speckle microscopy to directly quantify microtubule and actin dynamics in Aplysia growth cones as they turn towards beads coated with the cell adhesion molecule apCAM. During the initial phase of adhesion formation, dynamic microtubules in the peripheral domain preferentially explore apCAM-beads prior to changes in growth cone morphology and retrograde actin flow. Interestingly, these early microtubules have unchanged polymerization rates but spend less time in retrograde translocation due to uncoupling from actin flow. Furthermore, microtubules exploring the adhesion site spend less time in depolymerization. During the later phase of traction force generation, the central domain advances and more microtubules in the peripheral domain extend because of attenuation of actin flow and clearance of F-actin structures. Microtubules in the transition zone and central domain, however, translocate towards the adhesion site in concert with actin arcs and bundles, respectively. We conclude that adhesion molecules guide neuronal growth cones and underlying microtubule rearrangements largely by differentially regulating microtubule-actin coupling and actin movements according to growth cone region and not by controlling plus-end polymerization rates.  相似文献   

4.
Cytoskeletal dynamics and transport in growth cone motility and axon guidance   总被引:20,自引:0,他引:20  
Dent EW  Gertler FB 《Neuron》2003,40(2):209-227
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.  相似文献   

5.
Nerve growth cone motility   总被引:1,自引:0,他引:1  
Although many issues remain unresolved, the past year has witnessed a number of advances in our understanding of the inter-relationships between extracellular influences, cell phenotype, growth associated proteins, second messengers, and cytoskeletal components in the control of neurite outgrowth and growth cone behavior. Some of the early events associated with process initiation have been tentatively identified, and more is known about the assembly and stabilization of the microtubular framework of growing neurites. The mechanical forces involved in neurite extension have begun to be quantified, and interactions between the actin and microtubule systems are being further characterized. The current data more strongly support a functional role for GAP-43 in control of motility. The data also tend to support a central role for cytoplasmic calcium in mediating the actions of many growth-regulating influences, and strongly implicate changes in actin filament stability as mediating the behavioral effects of calcium.  相似文献   

6.
Regulation of growth cone motility.   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
Many external signals influence growth cone motility, pathfinding, and the formation of synapses that lead to the final map formation of the retinotectal system. Chick temporal retinal ganglion cell axons (RGCs) collapse and retract after encountering posterior tectal cells in vitro. During this process lateral extensions appear along the RGC axonal shaft. Lateral extensions appear as nascent interstitial axonal branches and also as defasciculating growth cones that are trailing along the pioneer axon. RGC branching controlled by repellent tectal cues has recently been shown to be the critical event in retinotectal map development. The intracellular mechanism underlying this phenomenon, however, is not understood. Inhibiting RhoA with either C3 toxin or inhibiting p160Rock kinase, an effector of RhoA, with Y27632 inhibited collapse, retraction, and the number of axons that showed lateral extensions. Lateral extension length increased significantly. Inhibiting Rac1A and cdc42 with cell permeable peptide inhibitors did not inhibit collapse of growth cones, but did inhibit axon retraction. In addition, the number of axons that showed lateral extensions and lateral extension length were significantly reduced. A dynamic cytoskeleton is necessary to react to incoming guidance information. This study addresses the problems of how growth cone motility and branching or defasciculation are affected by Rho-GTPases as extracellular signals are transmitted to the cytoskeleton.  相似文献   

9.
Myosin light chain phosphorylation and growth cone motility   总被引:8,自引:0,他引:8  
According to the treadmill hypothesis, the rate of growth cone advance depends upon the difference between the rates of protrusion (powered by actin polymerization at the leading edge) and retrograde F-actin flow, powered by activated myosin. Myosin II, a strong candidate for powering the retrograde flow, is activated by myosin light chain (MLC) phosphorylation. Earlier results showing that pharmacological inhibition of myosin light chain kinase (MLCK) causes growth cone collapse with loss of F-actin-based structures are seemingly inconsistent with the treadmill hypothesis, which predicts faster growth cone advance. These experiments re-examine this issue using an inhibitory pseudosubstrate peptide taken from the MLCK sequence and coupled to the fatty acid stearate to allow it to cross the membrane. At 5-25 microM, the peptide completely collapsed growth cones from goldfish retina with a progressive loss of lamellipodia and then filopodia, as seen with pharmacological inhibitors, but fully reversible. Lower concentrations (2.5 microM) both simplified the growth cone (fewer filopodia) and caused faster advance, doubling growth rates for many axons (51-102 microm/h; p <.025). Rhodamine-phalloidin staining showed reduced F-actin content in the faster growing growth cones, and marked reductions in collapsed ones. At higher concentrations, there was a transient advance of individual filopodia before collapse (also seen with the general myosin inhibitor, butanedione monoxime, which did not accelerate growth). The rho/rho kinase pathway modulates MLC dephosphorylation by myosin-bound protein phosphatase 1 (MPP1), and manipulations of MPP1 also altered motility. Lysophosphatidic acid (10 microM), which causes inhibition of MPP1 to accumulate activated myosin II, caused a contracted collapse (vs. that due to loss of F-actin) but was ineffective after treatment with low doses of peptide, demonstrating that the peptide acts via MLC phosphorylation. Inhibiting rho kinase with Y27632 (100 microM) to disinhibit the phosphatase increased the growth rate like the MLCK peptide, as expected. These results suggest that: varying the level of MLCK activity inversely affects the rate of growth cone advance, consistent with the treadmill hypothesis and myosin II powering of retrograde F-actin flow; MLCK activity in growth cones, as in fibroblasts, contributes strongly to controlling the amount of F-actin; and the phosphatase is already highly active in these cultures, because rho kinase inhibition produces much smaller effects on growth than does MLCK inhibition.  相似文献   

10.
Since cytoplasmic Ca2+ levels are reported to regulate neurite elongation, we tested whether calcium-activated kinases might be necessary for growth cone motility and neurite elongation in explant cultures of goldfish retina. Kinase inhibitors and activators were locally applied by micropipette to retinal growth cones and the responses were observed via phase-contrast videomicroscopy. In some cases, growth rates were also quantifed over several hours after general application in the medium. The selective inhibitors of protein kinase C, calphostin C (0.1–1 μM) and chelerythrin (up to 50 μM), caused no obvious changes in growth cones or neurite elongation, and activators of PKC (phorbols, arachidonic acid, and diacylglycerol) also were generally without effects, although phorbols slowed the growth rate. Inhibitors of protein kinase A and tyrosine kinases also produced no obvious effects. The calmodulin antagonists, calmidazolium (0.1 μM), trifluoperazine (100 μM), and CGS9343B (50 μM), however, caused a reversible growth cone arrest with loss of filopodia and lamellipodia. The growth cone became a club-shaped swelling which sometimes moved a short distance back the shaft, leaving evacuated filaments at points of strong filopodial attachments. A similar reversible growth cone arrest occurred with the general kinase inhibitors: H7 at 200 but not at 100 μM, and staurosporine at 100 but not 10 nM, suggesting possible involvement of a calmodulin-dependent kinase (camK) rather than PKC. The selective inhibitor of camKII, KN-62 (tested up to 50 μM), produced no effects but the specific myosin light-chain kinase (MLCK) inhibitors ML-7 (3–5 μM) and ML-9 (5–10 μM) reversibly reproduced the effect, suggesting that MLCK rather than camKII is necessary for growth cone motility. The MLCK inhibitors' effects both on growth cone morphology and on F-actin filaments (rhodamine-phalloidin staining) were similar to those caused by cytochalasin D (5 μM), and are discussed in light of findings that inhibiting MLCK disrupts actin filaments in astrocytes and fibroblasts. 1994 John Wiley & Sons, Inc.  相似文献   

11.
12.
The migration of tissue cells requires interplay between the microtubule and actin cytoskeletal systems. Recent reports suggest that interactions of microtubules with actin dynamics creates a polarization of microtubule assembly behavior in cells, such that microtubule growth occurs at the leading edge and microtubule shortening occurs at the cell body and rear. Microtubule growth and shortening may activate Rac1 and RhoA signaling, respectively, to control actin dynamics. Thus, an actin-dependent gradient in microtubule dynamic-instability parameters in cells may feed back through the activation of specific signalling pathways to perpetuate the polarized actin-assembly dynamics required for cell motility.  相似文献   

13.
It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.  相似文献   

14.
New exchanges in eph-dependent growth cone dynamics   总被引:2,自引:0,他引:2  
Murai KK  Pasquale EB 《Neuron》2005,46(2):161-163
The Eph receptor tyrosine kinases and their ephrin ligands play a pivotal role during axon pathfinding and neural circuitry formation. A prominent way in which Eph receptors sculpt cellular morphology is by remodeling the actin cytoskeleton and the surrounding plasma membrane through the regulation of Rho family GTPases. Two articles in this issue of Neuron (Sahin et al. and Cowan et al.) shed light on how Eph receptors recruit guanine nucleotide exchange factors for Rho family GTPases to modulate growth cone dynamics.  相似文献   

15.
The neurotransmitters serotonin and dopamine inhibit growth cone motility and neurite elongation of specific identified neurons of the pond snail Helisoma. Similarly, experimentally evoked action potentials inhibit motility of these growth cones. Here we explore the possibility that the motility- and elongation-inhibiting actions of serotonin and dopamine derive from the electrophysiological responses of the respective neurons. Evidence of three types in support of this hypothesis is presented: (1) Only those identified neurons for which motility is inhibited by serotonin or dopamine respond to the transmitter with sustained electrical excitation. (2) The magnitude of the electrical excitation response correlates with the degree of inhibition of growth cone motility. (3) The injection of hyperpolarizing current enables motility to continue as in the absence of transmitters. We conclude that membrane voltage is an important level of control of growth cone motility, at which neurotransmitters exert a regulatory influence.  相似文献   

16.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

17.
During neuronal pathfinding in vivo, growth cones must reorient their direction of migration in response to extracellular guidance cues. The developing grasshopper limb bud has proved to be a model system in which to examine mechanisms of growth cone guidance and motility in vivo. In this review we examine the contributions of adhesion and multiple guidance cues (semaphorins 1 and 2) in directing a growth cone steering event. Recent observations have suggested that the tibial pioneer growth cones are not directed via mechanisms of differential adhesivity. We present a model of growth cone steering that suggests a combination of adhesive and guidance receptors are important for a correct steering event and that guidance molecules may be important regulators of adhesive interactions with the actin cytoskeleton.  相似文献   

18.
Many external signals influence growth cone motility, pathfinding, and the formation of synapses that lead to the final map formation of the retinotectal system. Chick temporal retinal ganglion cell axons (RGCs) collapse and retract after encountering posterior tectal cells in vitro. During this process lateral extensions appear along the RGC axonal shaft. Lateral extensions appear as nascent interstitial axonal branches and also as defasciculating growth cones that are trailing along the pioneer axon. RGC branching controlled by repellent tectal cues has recently been shown to be the critical event in retinotectal map development. The intracellular mechanism underlying this phenomenon, however, is not understood. Inhibiting RhoA with either C3 toxin or inhibiting p160Rock kinase, an effector of RhoA, with Y27632 inhibited collapse, retraction, and the number of axons that showed lateral extensions. Lateral extension length increased significantly. Inhibiting Rac1A and cdc42 with cell permeable peptide inhibitors did not inhibit collapse of growth cones, but did inhibit axon retraction. In addition, the number of axons that showed lateral extensions and lateral extension length were significantly reduced. A dynamic cytoskeleton is necessary to react to incoming guidance information. This study addresses the problems of how growth cone motility and branching or defasciculation are affected by Rho‐GTPases as extracellular signals are transmitted to the cytoskeleton. © 2002 Wiley Periodicals, Inc. J Neurobiol 54: 358–369, 2003  相似文献   

19.
The cell biological processes underlying axon growth and guidance are still not well understood. An outstanding question is how a new segment of the axon shaft is formed in the wake of neuronal growth cone advance. For this to occur, the highly dynamic, splayed-out microtubule (MT) arrays characteristic of the growth cone must be consolidated (bundled together) to form the core of the axon shaft. MT-associated proteins stabilize bundled MTs, but how individual MTs are brought together for initial bundling is unknown. Here, we show that laterally moving actin arcs, which are myosin II-driven contractile structures, interact with growing MTs and transport them from the sides of the growth cone into the central domain. Upon Myosin II inhibition, the movement of actin filaments and MTs immediately stopped and MTs unbundled. Thus, Myosin II-dependent compressive force is necessary for normal MT bundling in the growth cone neck.  相似文献   

20.
Axonal transport is thought to distribute mitochondria to regions of the neuron where their functions are required. In cultured neurons, mitochondrial transport responds to growth cone activity, and this involves both a transition between motile and stationary states of mitochondria and modulation of their anterograde transport activity. Although the exact cellular signals responsible for this regulation remain unknown, we recently showed that mitochondria accumulate in sensory neurons at regions of focal stimulation with NGF and suggested that this involves downstream kinase signaling. Here, we demonstrate that NGF regulation of axonal organelle transport is specific to mitochondria. Quantitative analyses of motility show that the accumulation of axonal mitochondria near a focus of NGF stimulation is due to increased movement into bead regions followed by inhibition of movement out of these regions and that anterograde and retrograde movement are differentially affected. In axons made devoid of F-actin by latrunculin B treatment, bidirectional transport of mitochondria continues, but they can no longer accumulate in the region of NGF stimulation. These results indicate that intracellular signaling can specifically regulate mitochondrial transport in neurons, and they suggest that axonal mitochondria can respond to signals by locally altering their transport behavior and by undergoing docking interactions with the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号