首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrograde neuronal tracing in combination with double-labelling immunofluorescence was applied to distinguish the chemical coding of guinea-pig primary sensory neurons projecting to the adrenal medulla and cortex. Seven subpopulations of retrogradely traced neurons were identified in thoracic spinal ganglia T1-L1. Five subpopulations contained immunolabelling either for calcitonin gene-related peptide (CGRP) alone (I), or for CGRP, together with substance (P (II), substance P/dynorphin (III), substance P/cholecystokinin (IV), and substance P/nitric oxide synthase (V), respectively. Two additional subpopulations of retrogradely traced neurons were distinct from these groups: neurofilament-immunoreactive neurons (VI), and cell bodies that were nonreactive to either of the antisera applied (VII). Nerve fibres in the adrenal medulla and cortex were equipped with the mediator combinations I, II, IV and VI. An additional meshwork of fibres solely labelled for nitric oxide synthase was visible in the medulla. Medullary as well as cortical fibres along endocrine tissue apparently lacked the chemical code V, while in the external cortex some fibres exhibited code III. Some intramedullary neuronal cell bodies revealed immunostaining for nitric oxide synthase, CGRP or substance P, providing an additional intrinsic adrenal innervation. Perikarya, immunolabelled for nitric oxide synthase, however, were too few to match with the large number of intramedullary nitric oxide synthase-immunoreactive fibres. A non-sensory participation is also supposed for the particularly dense intramedullary network of solely neurofilament-immunoreactive nerve fibres. The findings give evidence for a differential sensory innervation of the guineapig adrenal cortex and medulla. Specific sensory neuron subpopulations suggest that nervous control of adrenal functions is more complex than hitherto believed.  相似文献   

2.
Summary By use of the indirect immunofluorescence technique the distribution of calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) has been analyzed in cervical and lumbar dorsal root ganglia of untreated and colchicine-treated rats. In addition, lumbar ganglia were examined 2 weeks after transection of the sciatic nerve. The occurrence of CGRP-positive cells in relation to ganglion cells containing substance P-, somatostatin-, galanin-, cholecystokinin (CCK)-, and vasoactive intestinal polypeptide (VIP)/peptide histidine isoleucin (PHI)-LI has been evaluated on consecutive sections as well as using elution-restaining and double-staining techniques.CGRP-LI was observed in many ganglion cells of all sizes ranging in diameter from 15 m to 65 m. Thus, this peptide occurs also in the large primary sensory neurons. In contrast to the sensory peptides described to date, CGRP-positive cells constituted up to 50% of all and 70% of the medium-sized neurons, thus being the most frequently occurring peptide in sensory neurons so far encountered. Subpulations of CGRP-positive neurons were shown to contain substance P-, somatostatin-, or galanin-LI and some CGRP-positive neurons contained both substance P- and galanin-LI. In fact, most substance P-, somatostatin- and galanin-positive cell bodies were CGRP-immunoreactive. The coexistence analysis further revealed that galanin and substance P often coexisted and that some cells contained both substance P- and somatostatin-LI, whereas no coexistence between galanin and somatostatin has as yet been seen. VIP/PHI-LI was only shown in a few cells in untreated or colchicine-treated rats. However, after transcetion of the sciatic nerve numerous VIP/PHI-positive cells were observed, some of which also contained CGRP-LI.The present results indicate that a CGRP-like peptide is present in a wide range of primary sensory neurons probably not related to specific sensory modalities. Often this peptide coexists with other biologically active peptides. Taken together these findings suggest that CGRP may have a generalized function.  相似文献   

3.
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels “tunes” heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally. U.E. is supported by the DFG (Er145-4) and the Gemeinnützige Hertie-Stiftung.  相似文献   

4.
The authors examined the presence of Substance P (SP) and Vasoactive Intestinal Polypeptide (VIP) and their related fibers in the pseudocapsule of uterine fibroids (PUF) and in normal myometrium (NM) during myomectomies in 57 non-pregnant women. 4 samples were removed from the normal myometrium (NM) and from PUF. The samples were sent for histological and immune-fluorescent investigations. SP and VIP values were found non-significantly higher in PUF than in NM: SP values were 10.2 ± 0.1 conventional units (C.U.) in PUF at the fundus of the uterus (FU) vs. 8.1 ± 0.6 C.U. of NM in the FU (p > 0.05), and SP values were 25.1 ± 0.9 C.U. in PUF in the uterine body (UB) compared to. 23.2 ± 1.4 C.U. of NM in the myometrium of the UB (p > 0.05). VIP values were 11.5 ± 0.9 C.U. in the PUF in FU compared to 9.8 ± 1.4 C.U. of NM in the FU (p > 0.05), and VIP values were 33.9 ± 3.9 C.U. in the PUF in the UB vs. 32.6 ± 4.8 C.U. of the NM in the UB (p > 0.05). These findings show that SP and VIP neurofibers are present in the fibroid pseudocapsule, similar to the values in the normal myometrium of a non-pregnant uterus. An intracapsular myoma excision which respects the pseudocapsule permits a physiological healing process of the uterine scar, due to a neurotransmitter sparing at the hysterotomic site. In women planning pregnancy, the myomectomy should be preferably performed respecting the pseudocapsule in order to preserve the neurotransmission.  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, which indicates the presence of neural nitric oxide synthase, the enzyme responsible for the generation of nitric oxide, was used in combination with retrograde labelling methods to determine, in whole-mounts and sections of rat major pelvic ganglia, whether neurons destined for the penile corpora cavernosa were able to produce nitric oxide. In whole-mount preparations of pelvic ganglia, among the 607±106 retrogradely labelled neurons innervating the penile corpora cavernosa, 84±7% were NADPH-diaphorase-positive, 30±7% of which were intensely histochemically stained. In serial sections of pelvic ganglia, out of a mean count of 451 retrogradely labelled neurons, 65% stained positively for NADPH-diaphorase. An average of 1879±363 NADPH-diaphorase positive cell bodies was counted in the pelvic ganglion. In the major pelvic ganglion, neurons both fluorescent for Fluorogold or Fast Blue and intensely stained for NADPH-diaphorase were consistently observed in the dorso-caudal part of the ganglia in the area close to the exit of the cavernous nerve and within this nerve. This co-existence was much less constant in other parts of the ganglion. In the rat penis, many NADPH-diaphorase-positive fibres and varicose terminals were observed surrounding the penile arteries and running within the wall of the cavernous spaces. This distribution of NADPH-diaphorase-positive nerve cells and terminals is consistent with the idea that the relaxation of the smooth muscles of the corpora cavernosa and the dilation of the penile arterial bed mediated by postganglionic parasympathetic neurons is attributable to the release of nitric oxide and that nitric oxide plays a crucial role in penile erection. Moreover, the existence in the pelvic ganglion of a large number of NADPH-diaphorase-positive neurons that are not destined for the corpora cavernosa suggests that nitric oxide is probably also involved in the function of other pelvic tissues.  相似文献   

6.
HPLC analysis of rat spinal cord revealed a uniform distribution of N-acetyl-aspartate (NAA) across both longitudinal and dorsoventral axes. In contrast, ventral cord N-acetyl-aspartylglutamate (NAAG) levels were significantly higher than those measured in dorsal halves of cervical, thoracic, and lumbar segments. Immunocytochemical studies using an affinity-purified antiserum raised against NAAG-bovine serum albumin revealed an intense staining of motoneurons within rat spinal cord. Along with the considerable NAAG content in ventral roots, these results suggest that NAAG may be concentrated in motoneurons and play a role in motor pathways. NAAG was also present in other peripheral neural tissues, including dorsal roots, dorsal root ganglia, superior cervical ganglia, and sciatic nerve. It is interesting that NAA levels in peripheral nervous tissues were lower than those in CNS structures and that NAA levels in ventral roots and sciatic nerve were lower than NAAG levels. These findings further document a lack of correlation between NAAG and NAA levels in both central and peripheral nervous tissues. Taken together, these data demonstrate the presence of NAAG in nonglutamatergic neuronal systems and suggest a more complex role of NAAG in neuronal physiology than previously postulated.  相似文献   

7.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

8.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

9.
Summary The mutilated foot rat is a mutant with autosomal recessive sensory neuropathy and frequent mutilation of the hindlimbs. Decreased numbers of dorsal root ganglion cells and diminished sensitivity to painful stimuli are characteristics of these animals. By use of immunocytochemistry, changes in the distributions of peptides involved in sensory and/or autonomic regulation, i.e. calcitonin generelated peptide (CGRP), tachykinins, enkephalin and neuropeptide Y in spinal cord, dorsal root ganglia and skin of these animals, were studied. In comparison with normal litter-mate controls, the dorsal horn of mutilated foot rats contained substantially fewer CGRP and tachykinin-immunoreactive fibres but more fibres immunoreactive for enkephalin. Many enkephalin-immunoreactive cell bodies were also found in the dorsal horn of the mutants, by contrast none were visible in control animals. Neuropeptide Y immunoreactivity was, however, unchanged in the spinal cord of the mutants. In the dorsal root ganglia of the mutants, the number of CGRPor tachykinin-immunoreactive cells and their proportion to total neuronal numbers were significantly less in comparison with normal controls. The diameter range of CGRP- and tachykinin-immunoreactive cells shifted from small (15–25 m) to medium size (25–45 m) as revealed by frequency distribution histograms. The skin from the affected foreand hindlimbs of the mutant rats, in keeping with fewer CGRP- and tachykinin-immunoreactive cells in the dorsal root ganglia, contained substantially less fibres immunoreactive for CGRP and tachykinins; a difference that was not seen in skin of unaffected areas (whiskers and snout). By contrast, neuropeptide Y-immunoreactive fibres showed a normal distribution around blood vessels and sweat glands of mutilated foot rats. The data suggest that diminished pain perception in the mutilated foot rat is related to loss of peptide-containing sensory neurones. Furthermore, the intraspinal increase of enkephalinergic neurones in the dorsal horn, concomitant with the decreased number of primary sensory neurones, may also play a contributory rôle in reducing pain thresholds.  相似文献   

10.
Previously, it was believed that the lumbar intervertebral disc was innervated segmentally by dorsal root ganglion (DRG) neurons via the sinuvertebral nerves. Recently, it was demonstrated using retrograde tracing methods that the lower disc (L5-L6) is innervated predominantly by upper (L1 and L2) DRG neurons via the sympathetic trunks. Furthermore, we investigated the expression of various pain-related molecules such as calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), P2X(3) receptor and vanniloid receptor 1 (VR1) in DRG neurons innervating the disc using a combination of immunostaining with the retrograde tracing method. This review outlines the distribution and immunocytochemical characterization of DRG neurons innervating the disc. Small nociceptive DRG neurons are classified into nerve growth factor (NGF)-dependent neurons and glial cell line-derived neurotrophic factor (GDNF)-dependent neurons and they can be distinguished by their reactivity for CGRP and IB4, respectively. We found that about half of the neurons innervating the disc were CGRP-immunoreactive (-ir), whilst, only 0.6% of the DRG neurons were IB4-positive, thereby indicating that NGF-dependent neurons are the main subpopulation which transmits and modulates nociceptive information from the disc. In addition, we also demonstrated P2X(3)- and VR1-immunoreactivity in DRG neurons innervating the disc and noted that they were mainly localized in NGF-dependent neurons. It is well known that NGF has sensitizing effects on DRG neurons, with a recent study demonstratng the presence of NGF in the painful intervertebral disc. Therefore, it is suggested that NGF is involved in the generation of discogenic low back pain.  相似文献   

11.
Summary The effects of chronic lesions of rat lumbar spinal or sciatic nerves on the binding of Glycine max (soybean) agglutinin to galacto-conjugates, in small-and medium-size primary sensory neurons of the L4 and L5 dorsal root ganglia, were examined over a 580-day period. Spinal nerve section resulted in a marked decrease in the population of stained neurons within 7 days. However, despite some retrograde morphological changes triggered by axonal injury, the proportion of stained nerve cells was normalized 180 days postoperatively. This temporary decrease in perikaryal lectin reactivity was initially associated with a marked accumulation of stained material in the nerve, proximal and distal to the site of section, with similar accumulations also being noticeable at each level of injury in sciatic nerves subjected to double ligature. This may reflect the presence of glycocompounds linked to the autolysis of nerve fibers during the phase of retrograde dying-back and Wallerian degeneration. At later stages, stained deposits could be seen scattered along central and peripheral axonal processes of the dorsal root ganglion neurons in the vicinity of the cell body. They may indicate a disturbance in the peripheral turnover of glycoproteins in chronically-transected nerves, with piling up of neuronal products. Sciatic nerve injury caused similar but less severe effects which, except for the L4 ganglion cells, were rapidly reversible.  相似文献   

12.
Summary Afferent connections to the ventrobasal complex (VB) of the thalamus were studied by means of retrograde transport of horseradish peroxidase (HRP) and by the Golgi-method. After HRP-injection into the VB, peroxidase-positive cells were observed contralaterally in the dorsal column nuclei (DCN), in the trigeminal nuclei and in the lateral cervical nucleus (LCN), and ipsilaterally in the somatosensory I (SI) and II (SII) cortical areas. Labeled cells of different shape and size were compared with neurons impregnated by the Golgi-technique. On the basis of HRP-labeling it is concluded that cells projecting to the VB are different in size and shape even within one region and that they correspond to the relay or efferent neurons observed in the Golgimaterial.  相似文献   

13.
A new turn-on fluorescent chemosensor (RBTM) for Fe3+ was designed based on Rhodamine B and a thiocarbonylimidazole moiety. The spectroscopic probe used for characterization of the synthesized system showed 300-fold fluorescence enhancement for the detection of Fe3+ with a 1:1 stoichiometry in EtOH/H2O solution (2:1, v/v, HEPES buffer, 1 mM, pH 7.30). Upon addition of Fe3+ in aqueous ethanol, the probe displayed a significant fluorescence enhancement and a distinct color change (colorless to pink) that can be detected by the naked eye. The binding constant between the probe and Fe3+ was determined to be 1.16 × 104 M−1 and the corresponding detection limit was calculated to be 0.256 µM. In addition, the energy gaps between the HOMO and LUMO in RBTM and RBTM-Fe3+ were calculated using DFT calculations to be 92.93 kcal/mol and 37.49 kcal/mol, respectively. The results indicate that binding of Fe3+ to RBTM lowered the HOMO–LUMO energy gap of the complex and stabilized the system. Fluorescence imaging experiments demonstrated that RBTM can be used as a fluorescent probe to detect Fe3+ in MKN-45 cells and dorsal root ganglia, thus revealing that RBTM could be used for biological applications.  相似文献   

14.
Immunohistochemistry and radioimmunoassay (RIA) revealed that corticotropin releasing factor (CRF)-like immunoreactivity was found to be colocalized with substance P (SP)-, somatostatin (SST)- and leu-enkephalin (LENK)-like immunoreactivity in the dorsal root- and trigeminal ganglia, the dorsal horn of the spinal cord (laminae I and II), the substantia gelatinosa, and at the lateral border of the spinal nucleus and in the tractus spinalis of the trigeminal nerve. These peptides were also located in fast blue labeled cells of the trigeminal ganglion following injection of the dye into the spinal trigeminal area. This indicates that there are possible sensory projections of these peptides into the spinal trigeminal area. Capsaicin treatment of neonatal rats resulted in a marked decrease in the density of CRF-, SP-, VIP- and CCK-containing neurons in the above mentioned hindbrain areas, whereas SST- and LENK-immunoreactivity were not changed. RIA revealed that, compared to controls, CRF, SP and VIP concentrations in these areas were decreased in rats pretreated with capsaicin, while SST levels were increased; CCK and LENK levels were unchanged. It is concluded that the primary afferent neurons of the nucleus and tractus spinalis of the trigeminal nerve are richly endowed with a number of peptides some of which are sensitive to capsaicin action. The close anatomical proximity of these peptide containing neurons suggests the possibility of a coexistance of one or more of these substances.  相似文献   

15.
Summary The true surface of rabbit spinal ganglion neurons has been made directly accessible to scanning electronmicroscope observation after removal of both the connective tissue and satellite cells that normally cover it. The neuronal surface is characterized by a profusion of slender projections whose shapes have been determined and whose length and width have been quantified. Controls carried out with transmission electron microscopy demonstrate that the procedure employed in this study satisfactorily preserves neuronal structure.  相似文献   

16.
Pituitary adenylyl cyclase activating peptide (PACAP) is a novel hypothalamic peptide that is widely distributed in neurons, including those of the gastrointestinal tract. In this study, a polyclonal antiserum directed against PACAP-27 was used to investigate the localisation of PACAP throughout the gut and to determine the projections of PACAP-immunoreactive (IR) neurons in the guinea-pig small and large intestines. PACAP-IR fibres were seen in the myenteric and submucous plexuses, in the longitudinal and circular muscle layers and around blood vessels of the submucosa throughout the gut. In both the small and large intestine, PACAP-IR cell bodies, most with Dogiel type-I morphology, were seen in the myenteric ganglia following colchicine treatment. Lesion studies (myotomy and myectomy operations) revealed that PACAP-IR interneurons projected anally in the ileum and colon. Myectomy operations resulted in a loss of PACAP-IR fibres in the circular muscle under the operation, whereas PACAP-IR fibres remained in the submucosa and around blood vessels. Following extrinsic denervation of the ileum, the number of PACAP-IR fibres in the submucosal ganglia and around blood vessels decreased. This suggests that a portion of PACAP-IR fibres supplying the submucosal ganglia and blood vessels have an extrinsic source. To investigate this, immunohistochemical studies were performed on sympathetic and dorsal root ganglia. Numerous reactive cells were seen in the dorsal root ganglia, but none was seen in sympathetic pre- or paravertebral ganglia.  相似文献   

17.
The amount of neurons of periprostatic accessory ganglia in pre- and peripubertal rats was studied to ascertain whether the development of these autonomic ganglia is androgen-dependent. Stereological estimates of the volumes and number of neurons immunoreactive to protein gene product 9.5 (PGP 9.5), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) were carried out. Immunostaining of androgen receptors (AR) in the ganglia was also performed. The ganglionic neurons from the two groups studied were immunoreactive to PGP 9.5, NPY, and VIP. Almost all the neurons were immunostained for AR. The ganglionic volume showed a significant increase in peripubertal prostate in comparison with the prepubertal gland. No significant changes were observed with respect to the absolute number of neurons immunoreactive to all the antigens. The neuronal volume was significantly increased in peripubertal rats in comparison with prepubertal animals. These findings led us to the following conclusions: There is no evidence of neurogenesis during pubertal development in the periprostatic accessory ganglia of the rat. The increase of ganglionic volume in puberty is due to the growth in neuronal volume. There were no differences between the sizes of NPY and VIP neurons in pubertal periprostatic accessory ganglia. The development of periprostatic vegetative neurons is androgen-dependent.  相似文献   

18.
Summary The 75-kDa low-affinity neurotrophin receptor (p75NTR) has been shown in previous reports to mediate neuronal cell death in vitro and in vivo under certain circumstances. Antisense oligonucleotides directed against p75NTR promote the survival of nerve growth factor-deprived dorsal root ganglia sensory neurons in vitro (Barrett, G.; Bartlett, P., Proc. Natl. Acad. Sci. USA 91:6501–6505; 1994) and axotomized dorsal root ganglia sensory neurons in vivo (Cheema, S. S.; Barrett, G. L.; Bartlett, P. F., J. Neurosci. Res. 46:239–245; 1996). In this study we compared the neuroprotective effects of antisense p75NTR oligonucleotides with two neurotrophic factors, namely nerve growth factor (NGF) and leukemia inhibitory factor, on cultured sensory neurons derived from postnatal day 7 and 14 rat dorsal root ganglia. After 3 d in culture, treatment with the neurotrophic factors had significant survival effects on sensory neuron cultures compared to treatment with basal medium (control). However, after 6 and 9 d in culture these rescue effects were not apparent. In contrast, antisense p75NTR oligonucleotides rescued significantly higher numbers of dorsal root ganglia sensory neurons after 6 and 9 d in culture than treatment with neurotrophic factors, sense oligonucleotides, and basal medium. Furthermore, antisense p75NTR oligonucleotides rescued trkA-, B-, and C-expressing neurons, while NGF and leukemia inhibitory factor targeted primarily the trkA-positive neurons. These findings suggest that antisense-based strategies that inhibit gene expression of cytotoxic molecules are more efficient at preventing postnatal sensory neuronal death in vitro than treatment with individual neurotrophic factors.  相似文献   

19.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

20.
Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics. TTX-R Na(v)1.9 sodium current was also significantly increased, whereas no alteration of TTX-R Na(v)1.8 current was observed in neurons from diabetic rats. Sodium current induced by fast- or slow-voltage ramps increased markedly in the diabetic neurons as well. Immunofluorescence studies showed significant increases in the levels and number of large DRG neurons from diabetic rats expressing Na(v)1.2, Na(v)1.3, Na(v)1.7, and Na(v)1.9 whereas Na(v)1.8 decreased. We also observed a decrease in the number of nodes of Ranvier expressing Na(v)1.8 and in staining intensity of Na(v)1.6 and Na(v)1.8 at nodes. Our results suggest that alterations of sodium channels occur in large DRG neurons and A-fibers, and may play an important role in diabetic sensory neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号