首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms responsible for the cardiotoxic effects of cocaine   总被引:4,自引:0,他引:4  
G E Billman 《FASEB journal》1990,4(8):2469-2475
Cocaine can induce lethal cardiovascular events, including myocardial infarction and ventricular fibrillation. The mechanisms responsible for these cardiotoxic effects of cocaine remain largely to be determined. Cocaine has both sympathomimetic (inhibition of neuronal uptake of norepinephrine) and local anesthetic (Na+ channel blockade) properties. Neurotransmitters released from cardiac sympathetic nerves bind to both alpha- and beta-adrenergic receptors eliciting a cascade of intracellular responses. Stimulation of beta-adrenergic receptors activates adenylate cyclase, increasing cyclic AMP levels, whereas alpha-adrenergic receptor stimulation activates phospholipase C, increasing inositol trisphosphate. These second messengers, in turn, elicit increases in cystolic calcium. Elevations in cystolic calcium can provoke oscillatory depolarizations of the cardiac membrane, triggering sustained action potential generation and extrasystoles. Cocaine also acts as a local anesthetic by inhibiting sodium influx into cardiac cells, which impairs impulse conduction and creates an ideal substrate for reentrant circuits. Thus, the adrenergic and anesthetic properties of cocaine could act synergistically to elicit and maintain ventricular fibrillation. Adrenergic receptor activation would trigger the event whereas sodium channel blockade would create the reentrant substrate to perpetuate the malignant arrhythmias.  相似文献   

2.
We studied the effect of electrical stimulation of the visual analyzer (evoking a phosphen phenomenon, the phosphen-electrostimulation, PES) on the visual functions, hemodynamics in the eye and brain, and general immune reactivity; the examined group Included patients afflicted with myopia. It was shown that the main visual functions, like visual keenness under normal and mesopial illumination conditions, accommodation reserves, and light sensitivity, improved under the influence of PES. Circulation in the eye and brain was intensified, as was shown by improvement of the brain blood supply via the main arterial pools and blood supply of the eye via the uveal tract, with a simultaneous decrease In the vascular tone. In addition, PES caused evident total optimization of the immuno-regulatory Processes in an organism.  相似文献   

3.
The effect of injection of exogenous melatonin on formation of the nocturnal peak of the melatonin concentration and intrapineal hormonogenesis was studied on mature male rats. It was shown that3H-melatonin is selectively uptaken by pinealocytes, and the uptake intensity depends on the degree of saturation of an organism with exogenous melatonin. Exogenous melatonin exerts an inhibitory influence on the hormone self-production, at the same time apparently stimulating synthesis of epiphyseal peptides. The results can be considered an indication of the existence of an ultra-short connection between the mechanisms of production of epiphyseal indoles and peptides, which apparently plays an important role in autocrine regulation of the epiphyseal functions.  相似文献   

4.
5.
Progestins and antiprogestins are widely used therapeutic agents in humans. In many cases, these are indicated for the treatment of reproductive activities. However, progesterone has widespread physiological effects including a reduction of the response to stress. We have reported that 5 min of restraint reduced lordosis behavior of ovariectomized rats hormonally primed with estradiol benzoate. When ovariectomized rats received both estradiol benzoate and progesterone priming, restraint had minimal effects on lordosis. Progesterone influences behavior through classical intracellular progesterone receptor-mediated nuclear events as well as extranuclear events. How these multiple events contribute to the response to stress is unclear. The current project was designed to initiate examination of the mechanisms responsible for progesterone's ability to protect against the effects of the restraint. In the first experiment, ovariectomized rats, primed with 10 μg estradiol benzoate, received 500 μg progesterone 4 h, 1 h, or 30 min before restraint. When progesterone was injected 4 h before restraint, progesterone eliminated the effects of restraint. In contrast, progesterone 30 min before restraint offered no protection. Effects of progesterone 1 h before restraint were equivocal allowing the suggestion that less than 4 h of progesterone priming might be sufficient. In the second experiment, the synthetic progestin, medroxyprogesterone, was shown to mimic effects of progesterone in preventing effects of restraint. Finally, the progesterone receptor antagonist, RU486, attenuated progesterone's protection against restraint. These findings offer evidence that ligand-activated progesterone receptor mechanisms contribute to the maintenance of lordosis behavior in the presence of mild stress.  相似文献   

6.
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.  相似文献   

7.
While actin polymerization and depolymerization are both essential for cell movement, few studies have focused on actin depolymerization. In vivo, depolymerization can occur exceedingly rapidly and in a spatially defined manner: the F-actin in the lamellipodia depolymerizes in 30 s after chemoattractant removal (Cassimeris, L., H. McNeill, and S. H. Zigmond. 1990. J. Cell Biol. 110:1067-1075). To begin to understand the regulation of F-actin depolymerization, we have examined F-actin depolymerization in lysates of polymorphonuclear leukocytes (PMNs). Surprisingly, much of the cell F-actin, measured with a TRITC-phalloidin-binding assay, was stable after lysis in a physiological salt buffer (0.15 M KCl): approximately 50% of the F-actin did not depolymerize even after 18 h. This stable F-actin included lamellar F-actin which could still be visualized one hour after lysis by staining with TRITC-phalloidin and by EM. We investigated the basis for this stability. In lysates with cell concentrations greater than 10(7) cells/ml, sufficient globular actin (G-actin) was present to result in a net increase in F-actin. However, the F-actin stability was not solely because of the presence of free G-actin since addition of DNase I to the lysate did not increase the F-actin loss. Nor did it appear to be because of barbed end capping factors since cell lysates provided sites for barbed end polymerization of exogenous added actin. The stable F-actin existed in a macromolecular complex that pelleted at low gravitational forces. Increasing the salt concentration of the lysis buffer decreased the amount of F-actin that pelleted at low gravitational forces and increased the amount of F-actin that depolymerized. Various actin-binding and cross-linking proteins such as tropomyosin, alpha-actinin, and actin-binding protein pelleted with the stable F-actin. In addition, we found that alpha-actinin, a filament cross-linking protein, inhibited the rate of pyrenyl F-actin depolymerization. These results suggested that actin cross-linking proteins may contribute to the stability of cellular actin after lysis. The activity of crosslinkers may be regulated in vivo to allow rapid turnover of lamellipodia F-actin.  相似文献   

8.
Incubation of isolated hepatocytes with CCl4 results in early reduction of the intracellular calcium content, mostly due to loss from the mitochondrial compartment. CCl4 treatment directly affects mitochondrial functions as indicated by the inhibition of Ca2+ uptake in cells permeabilized to the ion by digitonin exposure and by the reduction of intracellular ATP content in hepatocytes incubated in a glucose-free medium. Such mitochondrial damage is not caused by CCl4-induced stimulation of lipid peroxidation since it is not prevented by alpha-tocopherol, used at a concentration able to inhibit completely peroxidative reactions without interfering with CCl4 activation. All data together are in favour of a direct action of CCl4-reactive metabolites on liver cell calcium homeostasis.  相似文献   

9.
Species’ extinctions have spurred debate on whether interactions among few or among many species cause a positive diversity–productivity relationship in experimentally assembled grasslands. We addressed this question by quantifying the productivity of 14 species across an experimental diversity gradient in Minnesota. We found that interspecific interactions leading to coexistence and competitive displacement both determine which species overyield; i.e. are more productive at high diversity. Overyielding species were either superior N competitors (C4 grasses) or N fixers (legumes). Surprisingly, these species were not most productive in monoculture, thus, the ‘selection’ of productive species in diverse plots did not cause the positive diversity–productivity relationship. Both positive (with legumes) and negative interspecific interactions (with C4 grasses) determined whether individual species overyielded. Foliar pathogens did not cause overyielding, although other natural enemies may be responsible. Overyielding species are not displacing underyielding species over time, implying that other diversity‐promoting interactions also operate in this experiment.  相似文献   

10.
11.
12.
13.
14.
Normal mammalian cells have a limited lifespan in culture and hypotheses explaining cellular senescence usually fall into one of two categories. One of these postulates that random errors or damage accumulate in essential macromolecules and eventually outstrip the cell's capacity for resynthesis and repair. The second considers the changes when immortal clones are produced from normal cells and in particular the lifespans of hybrids when cells of differing growth potentials are fused. These data can be explained by postulating that the mortal phenotype is dominant and that trans-acting growth inhibitors are involved in limiting lifespan. But the results do not indicate if the inhibitors are the primary cause of senescence or a secondary effect induced by quite different initial events. We suggest that normal cells possess proof-reading mechanisms which monitor the accuracy of chromosome segregation and replication and which can induce the synthesis of growth inhibitors when they detect major errors in chromosome metabolism. It is further postulated that random damage accumulates during the growth of normal cells and eventually leads to detectable chromosome changes and the synthesis of inhibitors. Our hypothesis predicts that the emergence of immortal clones will be linked to the absence of active inhibitors and therefore to a loss in the fidelity of chromosome metabolism. Data are quoted which show that in contrast to normal cells, immortal clones have highly irregular karyotypes, amplify segments of their chromosomes, integrate exogenous DNA efficiently, maintain a constant level of 5-methylcytosine residues and have high frequencies of chromosomal aberrations. The mechanism of the proof-reading is unknown, but it may monitor changes in the patterns by which chromosome domains are attached to the nuclear matrix.  相似文献   

15.
In female mammals, inhibin is secreted by the granulosa cells and selectively inhibits secretion of FSH. Although circulating immunoreactive (ir)-inhibin levels decrease after ovulation as a result of the disappearance of its main source, they abruptly increase at the time of ovulation in mares. To investigate the mechanisms responsible for this increase, 50 ml of equine follicular fluid (eFF) was administered into the abdominal cavity of mares during the luteal phase (eFF, n = 4). One hour after treatment, plasma levels of ir-inhibin and inhibin pro-alphaC (but not estradiol-17beta) were significantly higher in eFF-treated mares than in control mares (n = 4). The hormone profiles in eFF-treated mares were similar to those in mares with the spontaneous or hCG induced ovulations. The present study demonstrates that the release of follicular fluid into the abdominal cavity when the follicle ruptures is responsible for the ovulatory inhibin surge in the mare. These findings also suggest that circulating inhibin pro-alphaC may be useful for determining the time of ovulation in the mare.  相似文献   

16.
The zeste gene product is required for transvection effects that imply the ability of regulatory elements on one chromosome to affect the expression of the homologous gene in a somatically paired chromosome. The z1 mutation causes a pairing dependent inhibition of the expression of the white gene. Both of these phenomena can be explained by the tendency of zeste protein, expressed in bacteria or in flies, to self-associate, forming complexes of several hundred monomers. These large aggregates bind to DNA and are found in nuclear matrix preparations, probably because they co-sediment with the matrix. The principal determinants of this self-association are located in the C-terminal half of the protein but some limited aggregation is obtained also with the N-terminal half, which contains the DNA binding domain. The z1 and zop2 mutant proteins aggregate to the same degree as the wild type but the z11G3 product, a pseudorevertant of z1, has a reduced tendency to aggregate. This mutation, which in vivo is antagonistic to z1 and does not support transvection effects, can be made to revert its phenotype when the mutant protein is over-produced under the control of the heat shock promoter. These results indicate that both the zeste-white interaction and transvection effects require the formation of high order aggregates. When the z1 protein is over-produced in vivo, it reduces the expression of an unpaired copy of white, indicating that the normal requirement for chromosome pairing is simply a device to increase the size of the aggregate bound to the white regulatory region.  相似文献   

17.
The mechanisms, by which phenobarbital (PB) supports the survival of adult rat hepatocytes in primary culture, were investigated. PB altered the shape of rat erythrocytes to produce cup-formed cells and protected them from hypotonic hemolysis. Anesthetics (ketamine, lidocaine, mepivacaine, and bupivacaine) and an anti-inflammatory agent (indomethacin), which are also known to protect erythrocytes from hypotonic hemolysis by stabilizing their membranes, efficiently supported the survival of hepatocytes in primary culture. Furthermore, the well-known biological membrane stabilizers, such as cholesterol and vitamin E, also showed the maintenance effect on primary cultured hepatocytes. PB effectively reduced the leakage of lactate dehydrogenase from hepatocytes caused by chenodeoxycholic acid in primary culture. Rotenone and amobarbital, which act repressively on the PB-sensitive site in the respiratory chain and are known to inhibit the mitochondrial formation of active oxygen species with NAD-linked substances, effectively prolonged the hepatocyte survival in primary culture. Elevation of oxygen tension in primary culture remarkably decreased the hepatocyte survival rate, which was preserved by addition of antioxidant substances, such as vitamin C, vitamin E, bifemelane, selenite, and superoxide dismutase. On the other hand, in the presence of PB, the hepatocyte survival rate hardly changed with the elevation of oxygen tension. From these findings, it seems that PB stabilizes the hepatocyte membranes and reduces the mitochondrial formation of active oxygen species and that the stabilized functions of membrane and the reduction of oxidative stress result in the prolonged survival of hepatocytes in primary culture.  相似文献   

18.
In situ Starling and power output curves and in vitro pressure-volume curves were determined for winter flounder hearts, as well as the hearts of two other teleosts (Atlantic salmon and cod). In situ maximum cardiac output was not different between the three species (approximately 62 ml.min(-1).kg(-1)). However, because of the small size of the flounder heart, maximum stroke volume per milliliter per gram ventricle was significantly greater (2.3) compared with cod (1.7) and salmon (1.4) and is the highest reported for teleosts. The maximum power output of the flounder heart (7.6 mW/g) was significantly lower than that measured in the salmon (9.7) and similar to the cod (7.8) but was achieved at a much lower output pressure (4.9 vs. 8.0 and 6.2 kPa, respectively). Although the flounder heart could not perform resting levels of cardiac function at subambient pressures, it was much more sensitive to filling pressure, a finding supported by pressure-volume curves, which showed that the flounder's heart chambers were more compliant. Finally, we report that the flounder's bulbus:ventricle mass ratio (0.59) was significantly higher than in the cod (0.37) and salmon (0.22). These data, which support previous studies suggesting that the flatfish cardiovascular system is a high-volume, low-pressure design, show that vis-à-fronte filling is not important in flatfish, and that some fish can achieve high levels of cardiac output by vis-à-tergo filling alone; and suggest that a large compliant bulbus assists the flounder heart in delivering extremely large stroke volumes at pressures that do not become limiting.  相似文献   

19.
The most carcinogenic forms of asbestos contain iron to levels as high as 36% by weight and catalyze many of the same biochemical reactions that freshly prepared solutions of iron do, i.e. oxygen consumption, generation of reactive oxygen species, lipid peroxidation and DNA damage. The participation of iron from asbestos in these reactions has been demonstrated using the iron chelator desferrioxamine B which inhibits iron-catalyzed reactions. Iron appears to be redox active on the asbestos fiber, but chelation and subsequent iron mobilization from asbestos by a variety of chelators, e.g. citrate, EDTA or nitrilotriacetate, makes the iron more redox active resulting in greater oxygen consumption and production of oxygen radicals in the presence of reducing agents. Iron also appears to be important for some of the asbestos-dependent biological effects on tissues or cells in culture, such as phagocytosis, cytotoxicity, lipid peroxidation and DNA damage. Therefore, redox cycling of iron to generate oxygen radicals at the surface of the fiber and/or in solution, as mobilized, low molecular weight chelates, may be very important in eliciting some of the biological effects of asbestos in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号