首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently purified and characterized a truncated soluble form of furin from which the predicted transmembrane domain and cytoplasmic tail were deleted (Hatsuzawa, K., Nagahama, M., Takahashi, S., Takada, K., Murakami, K., and Nakayama, K. (1992) J. Biol. Chem. 267, 16094-16099). Our results showed that furin resembles the yeast Kex2 protease with respect to both its enzymic properties and substrate specificity. Here we demonstrate that the soluble form of furin is capable of converting the precursors of albumin and the third component of complement (proalbumin and pro-C3, respectively) in vitro to mature proteins. Thus furin mimics the Ca(2+)-dependent proalbumin and pro-C3 convertases found in the Golgi membranes (Brennan, S. O., and Peach, R. J. (1988) FEBS Lett. 229, 167-170; Oda, K. (1992) J. Biol. Chem. 267, 17465-17471). Furthermore we show that the variant alpha 1-antitrypsin Pittsburgh, which is a specific inhibitor of the Golgi proalbumin convertase, inhibits not only the Golgi pro-C3 convertase, but also the soluble furin. These results suggest a role for furin in the cleavage of proproteins transported via the constitutive pathway.  相似文献   

2.
3.
The conversion site of proalbumin into serum albumin was investigated in the subcellular fractions of rat liver labeled with [3H] leucine in vivo. In the cisternae-rich fraction of the Golgi complex as well as in the microsomal fraction most of the labeled albumin was detected as proalbumin, while in the secretory vesicles, which were obtained in increased amount by oral administration of ethanol, more than 70% of the labeled albumin was found as serum type, indicating that conversion of proalbumin into serum albumin occurs within the secretory vesicles in rat liver. Little accumulation of albumin was observed in colchicine-treated rats.  相似文献   

4.
1. An enzyme from rat liver that converts proalbumin into albumin is described. Partial purification, inhibitor studies and the conditions for maximum activity suggest that the enzyme is cathepsin B. 2. A membrane-bound enzyme, located mainly in lysosomes, also converts proalbumin into albumin. This appears to be a membrane-bound form of cathepsin B. 3. Isolated Golgi vesicles, incubated under conditions suitable for cathepsin B, convert endogenous proalbumin into albumin. 4. This conversion in Golgi vesicles has an absolute requirement for Ca2+ at micromolar concentrations. Mg2+ does not affect or substitute for Ca2+. Both the proalbumin and the albumin formed from it are intravesicular. 5. Converting activity is enhanced by pretreatment with the known chemical fusogen, poly(ethyleneglycol). 6. Vesicles preincubated at pH above 7 in the presence of dithiothreitol show a marked fall in converting activity. This can be partially restored by incubation with native vesicles. These results suggest that vesicle fusion is a requirement for conversion of proalbumin into albumin.  相似文献   

5.
The role of chloride ions in regulated secretion is well described but remains poorly characterised in the constitutive system. In the liver, newly synthesised proalbumin is transported to the trans Golgi network where it is converted to albumin by a furin protease and then immediately secreted. We used this acid-dependent hydrolysis and the measurement of specific protein secretion rates to examine the H+ and Cl- ion dependence of albumin synthesis and secretion, a major constitutive protein secretory event in all mammals. Using permeabilised primary rat hepatocytes we show that ordinarily chloride ions are essential for the processing of proalbumin to albumin. However Cl- is not required for transport which continues but releases solely proalbumin. Prior treatment of the cells with Tris (used as a membrane-permeable weak base to neutralise Golgi luminal pH) both eliminated the formation of albumin and very greatly reduced secretion. After washing out Tris, both authentic secretion and processing could be restarted if Cl-, ATP, GTP, cAMP, Ca2+ and cytosolic proteins were added. Hence a requirement for chloride in transport, in addition to processing, can be uncovered by first neutralising pH gradients. Furthermore, the chloride channel blocker DIDS (4,4-diisothiocyanostilbene 2,2-disulphonic acid) reversibly inhibited the constitutive secretory pathway. However, the total mass of proalbumin detectable in DIDS-treated cells fell to 36% of control while the fraction processed to albumin remained almost constant. This clearly dissociates a large part of the Cl- requirement of the constitutive protein secretory pathway from the function of known liver Golgi Cl- channels.  相似文献   

6.
DISTRIBUTION AND PROPERTIES OF ANGIOTENSIN CONVERTING ENZYME OF RAT BRAIN   总被引:29,自引:19,他引:10  
Abstract— Angiotensin converting enzyme of rat brain was studied using Hip-His-Leu as substrate. The highest specific activity of the enzyme was associated with the microsomal fraction. The specific activity of the microsomal enzyme in several regions of the rat brain varied significantly. For example, the specific activities of the striatal and pituitary enzymes were about 10-fold greater than that of the cerebral cortical enzyme. The enzyme required chloride ion; moreover, activity was inhibited in the presence of disodium EDTA or O-phenanthroline, effects suggesting that the converting enzyme of brain is a metalloprotein. SQ-20881, a nonapeptide that inhibits converting enzyme in peripheral tissue, was a potent inhibitor of the enzyme of brain. In addition to Hip-His-Leu, the microsomal fraction was capable of liberating C terminal dipeptides from angiotensin I, Hip-Gly-Gly and Z-Gly- Gly-Val. The broad substrate specificity of the enzyme suggests that, in addition to the possible contribution of the enzyme to the brain renin-angiotensin system, other naturally occurring peptides might also be substrates for the enzyme.  相似文献   

7.
8.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   

9.
The tumor necrosis factor alpha converting enzyme (TACE) activity is required for the shedding of a variety of biologically active membrane bound precursors. The activation of TACE necessitates the proteolytic cleavage of its prodomain, a process that was suggested to be catalyzed by the proprotein convertase furin. However, the involvement of furin in this activation process has never been experimentally demonstrated. We have shown that the furinlike cleavage site (R-V-K-R(214)) localized between the prodomain and the metalloprotease domain of TACE is the sole site that can be in vitro cleaved by furin. In Cos7 cells, the release of TACE-processed substrates was reduced by the overexpression of the furin-specific proprotein convertase inhibitor Portland alpha1-antitrypsin inhibitor, but the release of TACE-processed substrates was increased by overexpression of furin in LoVo cells (deficient in furin activity) in which a mature form of TACE was identified. The immature form of TACE was detected at the surface of LoVo cells and at the surface of Cos7 and HT29 cells upon proprotein convertase inhibition. These results suggest that furin is the major proprotein convertase involved in the maturation/activation of TACE which is not a prerequisite for its cell-surface expression.  相似文献   

10.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

11.
A lysate of purified insulin secretory granules, which contains two types of proinsulin processing activity (type 1, Arg-Arg-directed and type II, Lys-Arg-directed (Davidson, H.W., Rhodes, C.J., and Hutton, J. C. (1988) Nature 333, 93-96), was found to process proalbumin by specific proteolytic cleavage of the COOH-terminal side of the Arg-2-Arg-1 sequence. The subcellular distribution of proalbumin processing activity in insulinoma tissue paralleled that for proinsulin conversion and occurred principally in a secretory granule fraction. Cleavage appeared to result from the Arg-Arg-directed type 1 proinsulin processing endo-peptidase. It was Ca2+-dependent (K0.5 activation = 1.0-1.5 mM Ca2+), unaffected by group-specific inhibitors of serine, cysteinyl, or aspartyl proteinases, and had an acidic pH optimum (5.5). Active-site inhibitor studies showed this activity had a preference for dibasic over monobasic amino acid sequences and indicated that the sequence of the dibasic site was an important determinant of the susceptibility of the substrate to cleavage. The activity did not process the proalbumin Christchurch mutant (Arg-2-Arg-1 to Arg-2-Gln-1). It was inhibited by the variant alpha 1-antitrypsin Pittsburgh (Met358 to Arg358; K0.5 = 100 nM) but not by other related proteins normally co-secreted with albumin from hepatocytes, namely alpha 1-antitrypsin M, alpha 2-macroglobulin, or antithrombin III. The insulin secretory granule proalbumin processing activity was indistinguishable from a proalbumin endopeptidase reported in rat liver membranes and similar to the yeast KEX-2 protease. These findings suggest that a highly conserved set of proprotein endopeptidases exists, which are specific for a dibasic sequence but broadly specific for proprotein substrates. Such enzymic activities appear to be active within both the constitutive and regulated pathways of secretion. Intraorganellar Ca2+ and pH appear to play a key role in regulating their activities.  相似文献   

12.
Experiments with rat liver homogenates showed that on subcellular fractionation the ability to catalyse the conversion of thyroxine into tri-iodothyronine was lost. The activity could in part be restored by addition of the cytosol to the microsomal fraction. Both components were found to be heat labile. The necessity of the presence of cytosol could be circumvented by incorporation of thiol-group-containing compounds in the medium. Optimal enzymic activity was observed in the presence of dithiothreitol and EDTA in medium of low osmolarity. By comparing the distribution of the converting enzyme over the subcellular fractions with a microsomal marker enzyme, glucose 6-phosphatase, it was demonstrated that the former is indeed of microsomal origin. Finally, it was shown that thiol groups play an essential role in the conversion of thyroxine into tri-iodothyronine.  相似文献   

13.
A new form of cytochrome P-450 was partially purified from hepatic microsomes of neonatally imprinted rats (adult male and adult male castrated at four weeks of age). This new form of cytochrome P-450 appears to have an apparent molecular weight of approximately 50,000 daltons as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It appears that this form of cytochrome P-450 is either absent or present in low concentrations in cytochrome P-450 preparations isolated from neonatally nonimprinted rats (adult female and adult male castrated at birth). Reconstitution of testosterone hydroxylase and benzphetamine N-demethylase activities of this partially purified cytochrome P-450 revealed that the presence of testosterone 16α-hydroxylase activity, an imprintable microsomal enzyme, was in parallel with the imprinting status of the animals; a significantly higher activity was detected in the neonatally imprinted than that of the nonimprinted animals. This was in contrast to the nonimprintable benzphetamine N-demethylase, testosterone 7α-and 6β-hydroxylase activities which exhibited no correlation with the imprinting status of the animals. We have prepared antisera from rabbits using the partially purified cytochrome P-450 preparations from adult male rats as antigens. These antisera inhibited microsomal testosterone 16α- and 7α-hydroxylase activities in a concentration-dependent manner, without impairing 6β-hydroxylase activity. These data suggest that the partially purified cytochrome P-450 from adult male rats consists of both imprintable (16α-) and nonimprintable (7α-) testosterone hydroxylase activities. The antisera formed immunoprecipitant lines in the Ouchterlony double diffusion plates with partially purified cytochrome P-450 from both neonatally imprinted and nonimprinted adult rats. The immunoprecipitant lines, as stained by coomassie blue, suggest the homology of the cytochrome P-450 preparations from neonatally imprinted and nonimprinted rats. Immunoabsorption of the antisera against neonatally nonimprinted, partially purified cytochrome P-450 completely removed the immunoprecipitant lines without appreciably impairing the inhibitory effects of antisera on the microsomal testosterone 16α-and 7α-hydroxylase activities. In contrast, immunoabsorption of the antisera against partially purified cytochrome P-450 from adult male rats (imprinted) abolished completely both the immunoprecipitant lines and the inhibition on microsomal testosterone hydroxylation reaction (16α and 7α). The inhibitory actin of antisera on testosterone hydroxyulation was also abolished upon boiling the antisera at 100°C for 5 minutes. The biochemical and immunochemical data in this study suggest that the neonatally imprintable form or forms of hepatic microsomal cytochrome P-450 accounts for a small fraction of the bulk of total cytochrome P-450. However, the existence of this form of cytochrome P-450 is regulated by gonadal hormones during the neonatal period and accounts for the major imprintable sex difference in drug and steroid metabolism in adulthood.  相似文献   

14.
The propeptide of furin has multiple roles in guiding the activation of the endoprotease in vivo. The 83-residue N-terminal propeptide is autoproteolytically excised in the endoplasmic reticulum (ER) at the consensus furin site, -Arg(104)-Thr-Lys-Arg(107)-, but remains bound to furin as a potent autoinhibitor. Furin lacking the propeptide is ER-retained and proteolytically inactive. Co-expression with the propeptide, however, restores trans-Golgi network (TGN) localization and enzyme activity, indicating that the furin propeptide is an intramolecular chaperone. Blocking this step results in localization to the ER-Golgi intermediate compartment (ERGIC)/cis-Golgi network (CGN), suggesting the ER and ERGIC/CGN recognize distinct furin folding intermediates. Following transport to the acidified TGN/endosomal compartments, furin cleaves the bound propeptide at a second, internal P1/P6 Arg site (-Arg-Gly-Val(72)-Thr-Lys-Arg(75)-) resulting in propeptide dissociation and enzyme activation. Cleavage at Arg(75), however, is not required for proper furin trafficking. Kinetic analyses of peptide substrates indicate that the sequential pH-modulated propeptide cleavages result from the differential recognition of these sites by furin. Altering this preference by converting the internal site to a canonical P1/P4 Arg motif (Val(72) --> Arg) caused ER retention and blocked activation of furin, demonstrating that the structure of the furin propeptide mediates folding of the enzyme and directs its pH-regulated, compartment-specific activation in vivo.  相似文献   

15.
Treatment of rats with 0.5-25 mumol/100 g body weight of colchicine for 1 h or more caused an inhibition of hepatic protein synthesis. This effect was not seen if animals were exposed to colchicine for less than 1 h. The delayed inhibition of protein synthesis affected both secretory and nonsecretory proteins. Treatment with colchicine (15 mumol/100 g) for 1 h or more caused the RNA content of membrane-bound polysomes to fall but did not change the polysomal profile of this fraction. By contrast, the total RNA content in the free polysome cell fraction was increased, and this was due to the presence of more ribosomal monomers and dimers. Electron microscope examination of the livers from rats treated for 3 h with colchicine showed an accumulation of secretory vesicles within the hepatocytes and a general distention of the endoplasmic reticulum. Administration of radioactive L-leucine to the rats led to an incorporation of radioactivity into two forms of intracellular albumin which were precipitable with antiserum to rat serum albumin but which were separable by diethylaminoethyl-cellulose chromatography. One form has arginine at the amino-terminal position and is proalbumin, and the other form, which more closely resembles serum albumin chromatographically, has glutamic acid at its amino terminus. Only proalbumin was found in rough and smooth endoplasmic reticulum fractions and in a Golgi cell fraction wich corresponds morphologically to mostly empty and partially filled secretory vesicles. However, in other Golgi cell fractions which were filled with secretory products, both radioactive proalbumin and serum albumin were found. This indicates that proalbumin is converted to serum albumin in these secretory vesicles just before exocytosis. Colchicine delayed the discharge of radioactive albumin from these filled secretory vesicles and caused an accumulation of both proalbumin and serum albumin within these cell fractions.  相似文献   

16.
Glutathione S-transferase is present in rat liver microsomal fraction, but its activity is low relative to the transferase activity present in the soluble fraction of the hepatocyte. We have found, however, that the activity of microsomal glutathione S-transferase is increased 5-fold after treatment with small unilamellar vesicles made from phosphatidylcholine. The increase in activity is due to the removal of an inhibitor of the enzyme from the microsomal membrane. The inhibitor is present in the organic layer of a washed Folch extract of the microsomal fraction. When this fraction of the microsomal extract is reconstituted in the form of small unilamellar vesicles, it inhibits microsomal glutathione S-transferase that had been activated by prior treatment with small unilamellar vesicles of pure phosphatidylcholine, but does not affect the activity of unactivated microsomal glutathione S-transferase. The inhibitor did not seem to be formed during the isolation of the microsomal fraction, and hence may be a physiological regulator of microsomal glutathione S-transferase. In this regard, both free fatty acid (palmitate) and lysophosphatidylcholine were shown to inhibit the enzyme reversibly. The results indicate that the activity of microsomal glutathione S-transferase is far greater than appreciated until now, and that this form of the enzyme may be an important factor in the hepatic metabolism of toxic electrophiles.  相似文献   

17.
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.  相似文献   

18.
Vesicles from rat and chicken livers contain very similar Ca2(+)-dependent proteases that respectively cleave (human) proalbumin at an Arg-Arg site and chicken proalbumin at an Arg-Phe-Ala-Arg site. Similar Ca2(+)-dependent proteases are also present in pancreatic secretory granules and cleave proinsulin at two sites, Arg-Arg and Lys-Arg. The mammalian liver processes a large variety of different proproteins and in order to assess its processing site requirements, we investigated the ability of rat hepatic vesicle extracts to cleave purified chicken proalbumin and human proinsulin. Despite having only a monobasic processing site, chicken proalbumin was cleaved faster than human proalbumin which not only contains a dibasic site, but has an identical propeptide to that of the rat's own proalbumin. Human proinsulin was processed by the rat liver extracts; however, no mature insulin was produced. Cleavage occurred in only one place, presumably the Arg-Arg site at the B-C chain junction. This suggests that the mammalian liver might not contain a Type II Lys-Arg-directed convertase, only a Type I Arg-Arg-specific enzyme. The Type I enzyme that cleaves human proalbumin appears to be the same activity that cleaves chicken proalbumin, suggesting a specificity for either X-Y-Arg-Arg or Arg-X-Y-Arg sequences. This proposal is in keeping with the processing site motif of some 16 different proproteins that are known to be processed in the liver and is entirely consistent with the known in vivo specificity of the enzyme defined by naturally occurring variants of human proproteins.  相似文献   

19.
Sphingosine-1-phosphate lyase is responsible for the ultimate step in sphingolipid breakdown, converting phosphorylated long chain bases into ethanolamine phosphate and a fatty aldehyde. Using tritiated dihydrosphingosine-1-phosphate, prepared enzymatically from [4,5-3H]dihydrosphingosylphosphocholine, we have reinvestigated the subcellular distribution of this enzyme in rat liver. Upon cell fractionation by differential centrifugation, the enzyme showed a microsomal distribution. Further separation of the microsomal fraction by sucrose gradient centrifugation confirmed an association with the endoplasmic reticulum. By means of constrained nonlinear regression, no evidence for a significant association with mitochondrial membranes, as reported previously (Stoffel, W., LeKim, D., and Sticht, G. (1969) Hoppe Seyler's Z. Physiol. Chem. 350, 1233-1241), nor with other cell compartments was found. The lyase activity, which appeared to be sensitive to different detergents, but not to Triton X-100, was not latent. It could be solubilized with Triton X-100, but not by high ionic strength, indicating that it is an integral membrane protein whose catalytic site is most probably exposed to the cytosol. Treatment of intact microsomal vesicles with trypsin or thermolysin inactivated the lyase activity, confirming that its catalytic site(s) or other domains essential for activity face the cytosol.  相似文献   

20.
We have found a proteolytic activity in Golgi membranes which efficiently converts [35S]methionine-labeled proalbumin, isolated from pulse-labeled rat hepatocytes in culture, to serum albumin in an in vitro assay system. The proalbumin-converting activity was dependent on Ca2+ and the maximum activity was observed at pH 5.5-6.0. Since the enzyme activity was found to be resistant not only to both leupeptin and E-64 but also to thiol-blocking reagents, it is unlikely that cathepsin B is involved in the proteolytic conversion of proalbumin occurring in the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号