首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.  相似文献   

2.
3.
The cellular response to p53 activation varies greatly in a stimulus- and cell type-specific manner. Dissecting the molecular mechanisms defining these cell fate choices will assist the development of effective p53-based cancer therapies and also illuminate fundamental processes by which gene networks control cellular behaviour. Using an experimental system wherein stimulus-specific p53 responses are elicited by non-genotoxic versus genotoxic agents, we discovered a novel mechanism that determines whether cells undergo proliferation arrest or cell death. Strikingly, we observe that key mediators of cell-cycle arrest (p21, 14-3-3σ) and apoptosis (PUMA, BAX) are equally activated regardless of outcome. In fact, arresting cells display strong translocation of PUMA and BAX to the mitochondria, yet fail to release cytochrome C or activate caspases. Surprisingly, the key differential events in apoptotic cells are p53-dependent activation of the DR4 death receptor pathway, caspase 8-mediated cleavage of BID, and BID-dependent activation of poised BAX at the mitochondria. These results reveal a previously unappreciated role for DR4 and the extrinsic apoptotic pathway in cell fate choice following p53 activation.  相似文献   

4.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

5.
6.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

7.
Treatment of L929 fibroblasts by the topoisomerase II inhibitor etoposide killed 50% of the cells within 72 h. The cell killing was preceded by the release of cytochrome c from the mitochondria. Simultaneous treatment of the cells with wortmannin, cycloheximide, furosemide, cyclosporin A, or decylubiquinone prevented the release of cytochrome c and significantly reduced the loss of viability. Etoposide caused the phosphorylation of p53 within 6 h, an effect prevented by wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK). The activation of p53 by etoposide resulted in the up-regulation of the pro-apoptotic protein Bax, a result that was prevented by the protein synthesis inhibitor cycloheximide. The increase in the content of Bax was followed by the translocation of this protein from the cytosol to the mitochondria, an event that was inhibited by furosemide, a chloride channel inhibitor. Stably transfected L929 fibroblasts that overexpress Akt were resistant to etoposide and did not translocate Bax to the mitochondria or release cytochrome c. Bax levels in these transfected cells were comparable with the wild-type cells. The release of cytochrome c upon translocation of Bax has been attributed to induction of the mitochondrial permeability transition (MPT). Cyclosporin A and decylubiquinone, inhibitors of MPT, prevented the release of cytochrome c without affecting Bax translocation. These data define a sequence of biochemical events that mediates the apoptosis induced by etoposide. This cascade proceeds by coupling DNA damage to p53 phosphorylation through the action of DNA-PK. The activation of p53 increases Bax synthesis. The translocation of Bax to the mitochondria induces the MPT, the event that releases cytochrome c and culminates in the death of the cells.  相似文献   

8.
The apoptosis-associated speck-like protein (ASC) is an unusual adaptor protein that contains the Pyrin/PAAD death domain in addition to the CARD protein-protein interaction domain. Here, we present evidence that ASC can function as an adaptor molecule for Bax and regulate a p53-Bax mitochondrial pathway of apoptosis. When ectopically expressed, ASC interacted directly with Bax, colocalized with Bax to the mitochondria, induced cytochrome c release with a significant reduction of mitochondrial membrane potential and resulted in the activation of caspase-9, -2 and -3. The rapid induction of apoptosis by ASC was not observed in Bax-deficient cells. We also show that induction of ASC after exposure to genotoxic stress is dependent on p53. Blocking of endogenous ASC expression by small-interfering RNA (siRNA) reduced the apoptotic response and inhibited translocation of Bax to mitochondria in response to p53 or genotoxic insult, suggesting that ASC is required to translocate Bax to the mitochondria. Our findings demonstrate that ASC has an essential role in the intrinsic mitochondrial pathway of apoptosis through a p53-Bax network.  相似文献   

9.
10.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

11.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

12.
Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2′-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser392. Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.  相似文献   

13.
We have recently reported that Ginsenoside Rh2 (G-Rh2) induces the activation of two initiator caspases, caspase-8 and caspase-9 in human cancer cells. However, the molecular mechanism of its death-inducing function remains unclear. Here we show that G-Rh2 stimulated the activation of both caspase-8 and caspase-9 simultaneously in HeLa cells. Under G-Rh2 treatment, membrane death receptors Fas and TNFR1 are remarkably upregulated. However, the induced expression of Fas but not TNFR1 was contributed to the apoptosis process. Moreover, significant increases in Fas expression and caspase-8 activity temporally coincided with an increase in p53 expression in p53-nonmutated HeLa and SK-HEP-1 cells upon G-Rh2 treatment. In contrast, Fas expression and caspase-8 activity remained constant with G-Rh2 treatment in p53-mutated SW480 and PC-3 cells. In addition, siRNA-mediated knockdown of p53 diminished G-Rh2-induced Fas expression and caspase-8 activation. These results indicated that G-Rh2-triggered extrinsic apoptosis relies on p53-mediated Fas over-expression. In the intrinsic apoptotic pathway, G-Rh2 induced strong and immediate translocation of cytosolic BAK and BAX to the mitochondria, mitochondrial cytochrome c release, and subsequent caspase-9 activation both in HeLa and in SW480 cells. p53-mediated Fas expression and subsequent downstream caspase-8 activation as well as p53-independent caspase-9 activation all contribute to the activation of the downstream effector caspase-3/-7, leading to tumor cell death. Taken together, we suggest that G-Rh2 induces cancer cell apoptosis in a multi-path manner and is therefore a promising candidate for antitumor drug development.  相似文献   

14.
15.
The mechanisms involved in p53-mediated cell death remain controversial. In the present study, we investigated this cell death pathway by stably transfecting the p53-null H358 cell line with a tetracycline-dependent wild type p53-expressing vector. Restoration of p53 triggered a G(2)/M cell cycle arrest and enhanced BAX protein expression, without inducing apoptosis or potentiating the cytotoxic effect of etoposide, vincristine, and cis-platinum. Accordingly, overexpression of BAX in H358 cells, through stable transfection of a tetracycline-regulated expression vector, did not induce cell death. Interestingly, the methylxanthine caffeine (4 mm) promoted the translocation of BAX from the cytosol to the mitochondria. In the setting of an overexpression of BAX, caffeine induced a conformational change of the protein and apoptosis. The consequences of caffeine were independent of its cell cycle-related activities. All together, caffeine synergizes with p53 for inducing cell death through a cell cycle-independent mechanism, involving mitochondrial translocation and conformational change of BAX protein.  相似文献   

16.
P F Li  R Dietz    R von Harsdorf 《The EMBO journal》1999,18(21):6027-6036
Downstream mediators of p53 in apoptosis induction remain to be elucidated. We report that p53-induced apoptosis occurred in the absence of cytochrome c release into the cytosol. Although Bax was upregulated, it remained largely in the cytosol and there was no detectable translocation to the mitochondria. Bid was not activated as no cleavage could be detected. Thus, the absence of cytochrome c release may be due to the lack of Bax translocation to mitochondria and/or Bid inactivation. Nevertheless, p53-induced apoptosis is still caspase dependent because it could be abolished by z-VAD-fmk. To search for alternative downstream targets of p53, we detected production of reactive oxygen species (ROS) as well as mitochondrial membrane potential (Deltapsi). p53 induced ROS generation, which then caused a transient increase of Deltapsi followed by a decrease. Antioxidants could inhibit the alterations of Deltapsi, thereby preventing apoptosis. z-VAD-fmk was unable to abrogate Deltapsi elevation but inhibited Deltapsi decrease, indicating that Deltapsi elevation and its decrease are two independent events. Bcl-2 may abolish elevation as well as decrease of Deltapsi without interfering with ROS levels. Thus, the ROS-mediated disruption of Deltapsi constitutes a pivotal step in the apoptotic pathway of p53, and this pathway does not involve cytochrome c release.  相似文献   

17.
Hydroxyurea (HU) is a competitive inhibitor of ribonucleotide reductase that is used for the treatment of myeloproliferative disorders. HU inhibits DNA replication and induces apoptosis in a cell type-dependent manner, yet the relevant pathways that mediate apoptosis in response to this agent are not well characterized. In this study, we employed the human myeloid leukemia 1 (ML-1) cell line as a model to investigate the mechanisms of HU-induced apoptosis. Exposure of ML-1 cells to HU caused rapid cell death that was accompanied by hallmark features of apoptosis, including membrane blebbing, phosphatidylserine translocation, and caspase activation. HU-induced apoptosis required new protein synthesis, was induced by HU exposures as short as 15 min, and correlated with the accumulation of p53 and induction of the p53 target gene PUMA. p53 induction in ML-1 cells was ATR dependent and downregulation of p53 through RNAi delayed HU-induced apoptosis. HU did not induce p53 or induce apoptosis in Molt-3 leukemia cells, even though exposure to HU induced a comparable level of DNA damage and robustly activated the ATR pathway. The microtubule inhibitor nocodazole suppressed HU-induced p53 accumulation in ML-1 cells suggesting that a microtubule-dependent event contributes to p53 induction and apoptosis in this cell line. Our findings outline an HU-induced cell death pathway and suggest that activation of the ATR is necessary, but not sufficient, for stabilization of p53 in response to DNA replication stress.  相似文献   

18.
Proteasome activation as a critical event of thymocyte apoptosis   总被引:4,自引:0,他引:4  
Caspase activation may occur in a direct fashion as a result of CD95 death receptor crosslinking (exogenous pathway) or may be triggered indirectly, via a Bcl-2 inhibitable mitochondrial permeabilization event (endogenous pathway). Thymocyte apoptosis is generally accompanied by proteasome activation. If death is induced by DNA damage, inactivation of p53, overexpression of a Bcl-2 transgene, inhibition of protein synthesis, and antioxidants (N-acetylcyteine, catalase) prevent proteasome activation. Glucocorticoid-induced proteasome activation follows a similar pattern of inhibition except for p53. Caspase inhibition fails to affect proteasome activation induced by topoisomerase inhibition or glucocorticoid receptor ligation. In contrast, caspase activation (but not p53 knockout or Bcl-2 overexpression) does interfere with proteasome activation induced by CD95. Specific inhibition of proteasomes with lactacystin or MG123 blocks caspase activation at a pre-mitochondrial level if thymocyte apoptosis is induced by DNA damage or glucocorticoids. In strict contrast, proteasome inhibition has no inhibitory effect on the mitochondrial and nuclear phases of apoptosis induced via CD95. Thus, proteasome activation is a critical event of thymocyte apoptosis stimulated via the endogenous pathway yet dispensable for CD95-triggered death.  相似文献   

19.
DNA damage-induced cell death by apoptosis   总被引:1,自引:0,他引:1  
  相似文献   

20.
The role of p53 in mediating nitric oxide (NO)-induced cell death remains uncertain. The exogenous NO donor S-nitrosoglutathione (GSNO) produced a concentration-dependent reduction in cell viability in embryonic chick cardiomyocytes in culture. Western blotting and immunocytochemistry for p53 showed that p53 was increased in whole cell lysates by GSNO: 0.001 mM GSNO led to 1.3 +/- 0.5-fold increase compared to control, and significantly (p < 0.05) increased to 1.6 +/- 0.2-fold after 0.01 mM GSNO. Higher GSNO concentrations did not further increase p53 protein expression despite producing significant increases in cell death. The p53 inhibitor pifithrin did not block GSNO-induced cell death. GSNO induced morphological changes of DNA fragmentation, nuclear condensation, and cell shrinkage. Pifithrin failed to block these morphologic changes, while it antagonized the similar cellular changes induced by adriamycin, which operates in part through p53. NO induced a concentration-dependent DNA damage. When assessed by the comet assay, the damage was 2.1 +/- 0.3-fold and 2.6 +/- 0.5-fold more than the control following 0.01 mM and 1.0 mM GSNO treatments, respectively. The DNA damage was not reduced by treatment with the pifithrin, which markedly reduced DNA damage induced by adriamycin. There was no p53 translocation to mitochondria, any major cytochrome c release from mitochondria, or change in mitochondrial membrane potential. Furthermore, cyclosporin A, which inhibits mitochondrial pore opening and cytochrome c loss, did not alter NO-induced cell death. Translocation of p53 from the cytosol to the nucleus occurred with a maximal increase of 2.9-fold in the nucleus following 1.0 mM GSNO for 24 h. These data indicate that in cardiomyocytes, NO induced marked DNA damage and translocation of p53 to the nucleus, suggesting that p53 is involved in the cellular response to NO, perhaps to modulate the genomic response to NO-induced cellular toxicity. NO-induced cell death, however, operates through p53-independent pathways, including a mitochondrial apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号