首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of ancestral gene families has played an important role in genomic specialization in animals. An examination of the pattern of gene family loss in completely sequenced animal genomes revealed that the same gene families have been lost independently in different lineages to a far greater extent than expected if gene loss occurred at random. This result implies that certain ancestral gene families—and thus the biological functions they encode—have been more expendable than others over the radiation of the animal phyla.Reviewing Editor: Dr. Manyuan Long  相似文献   

2.
3.
Plant beta-1,3-glucanases (beta-1,3-Gs) (E.C. 3.2.1.39) comprise large, highly complex gene families involved in pathogen defense as well as a wide range of normal developmental processes. In spite of previous phylogenetic analyses that classify beta-1,3-Gs by sequence relatedness, the functional evolution of beta-1,3-Gs remains unclear. Here, expression and phylogenetic analyses have been integrated in order to investigate patterns of functional divergence in the Arabidopsis beta-1,3-G gene family. Fifty beta-1,3-G genes were grouped into expression classes through clustering of microarray data, and functions were inferred based on knowledge of coexpressed genes and existing literature. The resulting expression classes were mapped as discrete states onto a phylogenetic tree and parsimony reconstruction of ancestral expression states was performed, providing a model of expression divergence. Results showed a highly nonrandom distribution of developmental expression states in the phylogeny (P = 0.0002) indicating a significant degree of coupling between sequence and developmental expression divergence. A weaker, yet significant level of coupling was found using stress response data, but not using hormone-response or pathogen-response data. According to the model of developmental expression divergence, the ancestral function was most likely involved in cell division and/or cell wall remodeling. The associated expression state is widely distributed in the phylogeny, is retained by over 25% of gene family members, and is consistent with the known functions of beta-1,3-Gs in distantly related species and gene families. Consistent with previous hypotheses, pathogenesis-related (PR) beta-1,3-Gs appear to have evolved from ancestral developmentally regulated beta-1,3-Gs, acquiring PR function through a number of evolutionary events: divergence from the ancestral expression state, acquisition of pathogen/stress-responsive expression patterns, and loss of the C-terminal region including the glycosylphosphatidylinisotol (GPI)-anchoring site thus allowing for extracellular secretion.  相似文献   

4.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5''-most and 3''-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

5.
The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scenarios of gene structure evolution in paralogous gene families in animals and plants revealed numerous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral introns. This trend held even for lineages in which vertical evolution of genes involved more intron losses than gains, suggesting that gene duplication boosts intron insertion. However, dating gene duplications and the associated intron gains and losses based on the molecular clock assumption showed that very few, if any, introns were gained during the last ~100 million years of animal and plant evolution, in agreement with previous conclusions reached through analysis of orthologous gene sets. These results are generally compatible with the emerging notion of intensive insertion and loss of introns during transitional epochs in contrast to the relative quiet of the intervening evolutionary spans.  相似文献   

6.
There are many gene families that are specific to multicellular animals. These have either diverged from ancestral genes that are shared with fungi and/or plants or evolved from an ancestral gene unique to animals. The evolution of gene families involved in cell–cell communication and developmental control has been studied to establish whether the number of member genes increased dramatically immediately prior to or in concert with the Cambrian explosion. A molecular phylogeny‐based analysis of several animal‐specific gene families has revealed that gene diversification by duplication occurred during two active periods interrupted by a long intervening quiescent period. Intriguingly, the Cambrian explosion is situated in the silent period, indicating that there is no direct link between the first burst of gene diversification and the Cambrian explosion itself. The importance of gene recruitment as a possible molecular mechanism for morphological diversity, and its possible role for the Cambrian explosion, are discussed. BioEssays 23:1018–1027, 2001. © 2001 John Wiley & Sons, Inc.  相似文献   

7.
GeneTRACE-reconstruction of gene content of ancestral species   总被引:4,自引:0,他引:4  
While current computational methods allow the reconstruction of individual ancestral protein sequences, reconstruction of complete gene content of ancestral species is not yet an established task. In this paper, we describe GENETRACE, an efficient linear-time algorithm that allows the reconstruction of evolutionary history of individual protein families as well as the complete gene content of ancestral species. The performance of the method was validated with a simulated evolution program called SimulEv. Our results indicate that given a set of correct phylogenetic profiles and a correct species tree, ancestral gene content can be reconstructed with sensitivity and selectivity of more than 90%. SimulEv simulations were also used to evaluate performance of the reconstruction of gene content-based phylogenetic trees, suggesting that these trees may be accurate at the terminal branches but suffer from long branch attraction near the root of the tree.  相似文献   

8.
E R Waters  B A Schaal 《Génome》1996,39(1):150-154
Hybridization is a common phenomenon that results in complex genomes. How ancestral genomes interact in hybrids has long been of great interest. Recombination among ancestral genomes may increase or decrease genetic variation. This study examines rDNA from members of the Brassica triangle for evidence of gene conversion across ancestral genomes. Gene conversion is a powerful force in the evolution of multigene families. It has previously been shown that biased gene conversion can act to homogenize rDNA repeats within hybrid genomes. Here, we find no evidence for biased gene conversion or unequal crossing over across ancestral genomes in allotetraploid Brassica species. We suggest that, while basic genomic processes are shared by all organisms, the relative frequency of these processes and their evolutionary importance may differ among lineages. Key words : Brassica, rDNA, gene conversion, allotetraploids.  相似文献   

9.
Comparison of the predicted protein sets encoded by the complete genomes of two vertebrates (human and pufferfish), the urochordate Ciona intestinalis, three nonchordate animals, and two fungi were used to reconstruct a set of gene families present in the common ancestor of chordates. These ancestral families were much more likely to be lost in Ciona than in either vertebrate. In addition, of 256 duplicate gene pairs that arose by duplication prior to the most recent common ancestor of vertebrates and insects, one of the duplicate genes was four times as likely to be lost in Ciona as in the vertebrates. These results show that the genome of Ciona is not representative of the ancestral chordate genome with respect to gene content but rather shows derived features that may reflect adaptation of the specific ecological niche of urochordates.  相似文献   

10.
MOTIVATION: Gene duplications and losses (GDLs) are important events in genome evolution. They result in expansion or contraction of gene families, with a likely role in phenotypic evolution. As more genomes become available and their annotations are improved, software programs capable of rapidly and accurately identifying the content of ancestral genomes and the timings of GDLs become necessary to understand the unique evolution of each lineage. RESULTS: We report EvolMAP, a new algorithm and software that utilizes a species tree-based gene clustering method to join all-to-all symmetrical similarity comparisons of multiple gene sets in order to infer the gene composition of multiple ancestral genomes. The algorithm further uses Dollo parsimony-based comparison of the inferred ancestral genes to pinpoint the timings of GDLs onto evolutionary intervals marked by speciation events. Using EvolMAP, first we analyzed the expansion of four families of G-protein coupled receptors (GPCRs) within animal lineages. Additional to demonstrating the unique expansion tree for each family, results also show that the ancestral eumetazoan genome contained many fewer GPCRs than modern animals, and these families expanded through concurrent lineage-specific duplications. Second, we analyzed the history of GDLs in mammalian genomes by comparing seven proteomes. In agreement with previous studies, we report that the mammalian gene family sizes have changed drastically through their evolution. Interestingly, although we identified a potential source of duplication for 75% of the gained genes, remaining 25% did not have clear-cut sources, revealing thousands of genes that have likely gained their distinct sequence identities within the descent of mammals. AVAILABILITY: Query server, source code and executable are available at http://kosik-web.mcdb.ucsb.edu/evolmap/index.htm .  相似文献   

11.
In dissecting the transition from invertebrates to vertebrates at the molecular level, whole-genome duplications are recognized as a key event. This gave rise to more copies of genes in jawed vertebrates (gnathostomes), such as the four Hox clusters in the human, compared to the single ancestral cluster in invertebrates. To date, as the most early-branching lineages in vertebrates, cyclostomes (hagfishes and lampreys) have been used for comparative analyses of gene regulations and functions. However, assignment of orthology/paralogy for cyclostomes' genes is not unambiguously demonstrated. Thus, there is a high degree of incongruence in tree topologies between gene families, although whole genome duplications postulate uniform patterns in gene phylogeny. In this review, we demonstrate how expansion of an ancient genome before the cyclostome-gnathostome split, followed by reciprocal gene loss, can cause this incongruence. This is sometimes referred to as 'hidden paralogy'.  相似文献   

12.
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. Two factors inhibiting our understanding the evolution of gene rearrangement in bivalves are inadequate taxonomic sampling and failure to examine gene order in a phylogenetic framework. Here, we report the first complete nucleotide sequence (16,060 bp) of the mitochondrial (mt) genome of a North American freshwater bivalve, Lampsilis ornata (Mollusca: Paleoheterodonta: Unionidae). Gene order and mt genome content is examined in a comparative phylogenetic framework for Lampsilis and five other bivalves, representing five families. Mitochondrial genome content is shown to vary by gene duplication and loss among taxa and between male and female mitotypes within a species. Although mt gene arrangement is highly variable among bivalves, when optimized on an independently derived phylogenetic hypothesis, it allows for the reconstruction of ancestral gene order states and indicates the potential phylogenetic utility of the data. However, the interpretation of reconstructed ancestral gene order states must take in to account both the accuracy of the phylogenetic estimation and the probability of character state change across the topology, such as the presence/absence of atp8 in bivalve lineages. We discuss what role, if any, doubly uniparental inheritance (DUI) and recombination between sexual mitotypes may play in influencing gene rearrangement of the mt genome in some bivalve lineages.  相似文献   

13.
Yegorov S  Good S 《PloS one》2012,7(3):e32923
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.  相似文献   

14.
Comparing chromosomal gene order in two or more related species is an important approach to studying the forces that guide genome organization and evolution. Linked clusters of similar genes found in related genomes are often used to support arguments of evolutionary relatedness or functional selection. However, as the gene order and the gene complement of sister genomes diverge progressively due to large scale rearrangements, horizontal gene transfer, gene duplication and gene loss, it becomes increasingly difficult to determine whether observed similarities in local genomic structure are indeed remnants of common ancestral gene order, or are merely coincidences. A rigorous comparative genomics requires principled methods for distinguishing chance commonalities, within or between genomes, from genuine historical or functional relationships. In this paper, we construct tests for significant groupings against null hypotheses of random gene order, taking incomplete clusters, multiple genomes, and gene families into account. We consider both the significance of individual clusters of prespecified genes and the overall degree of clustering in whole genomes.  相似文献   

15.
Maczkowiak F  Da Lage JL 《Genetica》2006,128(1-3):145-158
Alpha-amylase genes often form multigene families in living organisms. In Diptera, a remote paralog, Amyrel, had been discovered in Drosophila, where this gene is currently used as a population and phylogenetic marker. The putative encoded protein has about 40% divergence with the classical amylases. We have searched the presence of the paralog in other families of Diptera to track its origin and understand its evolution. Amyrel was detected in a number of families of Muscomorpha (Brachycera-Cyclorrapha), suggesting an origin much older than previously thought. It has not been found elsewhere to date, and it is absent from the Anopheles gambiae genome. The intron–exon structures of the genes found so far suggest that the ancestral gene (before the duplication which gave rise to Amyrel) had two introns, and that subsequent, repeated and independent loss of one or both introns occurred in some Muscomorpha families. It seems that the Amyrel protein has experienced specific amino acid substitutions in regions generally well conserved in amylases, raising the possibility of peculiar, functional adaptations of this protein.  相似文献   

16.
The evolutionary history of quorum-sensing systems in bacteria   总被引:3,自引:0,他引:3  
Communication among bacterial cells through quorum-sensing (QS) systems is used to regulate ecologically and medically important traits, including virulence to hosts. QS is widespread in bacteria; it has been demonstrated experimentally in diverse phylogenetic groups, and homologs to the implicated genes have been discovered in a large proportion of sequenced bacterial genomes. The widespread distribution of the underlying gene families (LuxI/R and LuxS) raises the questions of how often QS genes have been transferred among bacterial lineages and the extent to which genes in the same QS system exchange partners or coevolve. Phylogenetic analyses of the relevant gene families show that the genes annotated as LuxI/R inducer and receptor elements comprise two families with virtually no homology between them and with one family restricted to the gamma-Proteobacteria and the other more widely distributed. Within bacterial phyla, trees for the LuxS and the two LuxI/R families show broad agreement with the ribosomal RNA tree, suggesting that these systems have been continually present during the evolution of groups such as the Proteobacteria and the Firmicutes. However, lateral transfer can be inferred for some genes (e.g., from Firmicutes to some distantly related lineages for LuxS). In general, the inducer/receptor elements in the LuxI/R systems have evolved together with little exchange of partners, although loss or replacement of partners has occurred in several lineages of gamma-Proteobacteria, the group for which sampling is most intensive in current databases. For instance, in Pseudomonas aeruginosa, a transferred QS system has been incorporated into the pathway of a native one. Gene phylogenies for the main LuxI/R family in Pseudomonas species imply a complex history of lateral transfer, ancestral duplication, and gene loss within the genus.  相似文献   

17.
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.  相似文献   

18.
Polyploidy events have played an important role in the evolution of angiosperm genomes. Here, we demonstrate how genomic histories can increase phylogenetic resolution in a gene family, specifically the expansin superfamily of cell wall proteins. There are 36 expansins in Arabidopsis and 58 in rice. Traditional sequence-based phylogenetic trees yield poor resolution below the family level. To improve upon these analyses, we searched for gene colinearity (microsynteny) between Arabidopsis and rice genomic segments containing expansin genes. Multiple rounds of genome duplication and extensive gene loss have obscured synteny. However, by simultaneously aligning groups of up to 10 potentially orthologous segments from the two species, we traced the history of 49 out of 63 expansin-containing segments back to the ancestor of monocots and eudicots. Our results indicate that this ancestor had 15-17 expansin genes, each ancestral to an extant clade. Some clades have strikingly different growth patterns in the rice and Arabidopsis lineages, with more than half of all rice expansins arising from two ancestral genes. Segmental duplications, most of them part of polyploidy events, account for 12 out of 21 new expansin genes in Arabidopsis and 16 out of 44 in rice. Tandem duplications explain most of the rest. We were also able to estimate a minimum of 28 gene deaths in the Arabidopsis lineage and nine in rice. This analysis greatly clarifies expansin evolution since the last common ancestor of monocots and eudicots and the method should be broadly applicable to many other gene families.  相似文献   

19.
20.
In an effort to localize a gene for ataxia-telangiectasia (A-T), we have genotyped 27 affected Costa Rican families, with 13 markers, in the chromosome 11q22-23 region. Significant linkage disequilibrium was detected for 9/13 markers between D11S1816 and D11S1391. Recombination events observed in these pedigrees places A-T between D11S1819 and D11S1960. One ancestral haplotype is common to 24/54 affected chromosomes and roughly two-thirds of the families. Inferred (ancestral) recombination events involving this common haplotype in earlier generations suggest that A-T is distal to D11S384 and proximal to D11S1960. Several other common haplotypes were identified, consistent with multiple mutations in a single gene. When considered together with all other evidence, this study further sublocalizes the major A-T locus to ≈200 kb, between markers S384 and S535.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号