首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Song J  Laskowski M  Qasim MA  Markley JL 《Biochemistry》2003,42(10):2847-2856
From the larger set of 191 variants at all the variable contact positions in the turkey ovomucoid third domain, we selected a subset that consists of Asp, Glu, His, and Lys residues at eight of the nine contiguous P6-P3' positions (residues 13-21), the exception being P3-Cys16 which is involved in a conserved disulfide bridge. Two-dimensional [1H,1H]-TOCSY data were collected for each variant as a function of sample pH. This allowed for the evaluation of 31 of the 32 pK(a) values for these residues, the exception being that of P5-Lys14, whose signals at high pH could not be resolved from those of other Lys residues in the molecule. Only two of the titrating residues are present in the wild-type protein (P6-Lys13 and P1'-Glu19); hence, these measurements complement earlier measurements by A. D. Robertson and co-workers. This data set was supplemented with results from the pH dependence of NMR spectra of four additional single mutants, P1-Leu18Gly, P1-Leu18Ala, P2-Thr17Val, and P3'-Arg21Ala, and two double mutants, P2-Thr17Val/P3'-Arg21Ala and P8-Tyr11Phe/P6-Lys13Asp. Probably the most striking result was observation of a P2-Thr17...P1'-Glu19 hydrogen bond and a P1'-Glu19-P3'-Arg21 electrostatic interaction within the triad of P2, P1', and P3' (residues 17, 19, and 21, respectively). In several cases, the pK(a) of a particular residue was sensed by resonances not only in that residue but also in residue(s) with which it interacts. Remarkably, in several interacting systems, resonances from different protons within the same residue yielded different pHmid values.  相似文献   

2.
Forsyth WR  Robertson AD 《Biochemistry》2000,39(27):8067-8072
A number of carboxyl groups in turkey ovomucoid third domain (OMTKY3) have low pK(a) values. A previous study suggested that neighboring amino groups were primarily responsible for the low carboxyl pK(a) values. However, the expected elevation in pK(a) values for these amino groups was not observed. In the present study, site-directed mutagenesis is used to investigate the origins of perturbed carboxyl pK(a) values in OMTKY3. Electrostatic calculations suggest that Lys 34 has large effects, 0.4-0.6 unit, on Asp 7, Glu 10, and Glu 19 which are 5-11 A away from Lys 34. Two-dimensional (1)H NMR techniques were used to determine pK(a) values of the acidic residues in OMTKY3 mutants in which Lys 34 has been replaced with threonine and glutamine. Surprisingly, the pK(a) values in the mutants are very close to those of the wild-type protein. The insensitivity of the acidic residues to replacement of Lys 34 suggests that long-range electrostatic interactions play less of a role in perturbing carboxyl pK(a) values than originally thought. We hypothesize that hydrogen bonds play a key role in perturbing some of the carboxyl ionization equilibria in OMTKY3.  相似文献   

3.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

4.
The virgin (reactive-site Leu18-Glu19 peptide bond intact) and modified (reactive-site Leu18-Glu19 peptide bond hydrolyzed) forms of turkey ovomucoid third domain (OMTKY3 and OMTKY3*, respectively) have been analyzed by proton-detected 1H(13C) two-dimensional single-bond correlation (1H[13C]SBC) spectroscopy. Previous 1H-nmr assignments of these proteins [A.D. Robertson, W.M. Westler, and J.L Markley (1988) Biochemistry, 27, 2519-2529; G. I. Rhyu and J. L. Markley (1988) Biochemistry, 27, 2529-2539] have been extended to directly bonded 13C atoms. Assignments have been made to 52 of the 56 backbone 13C alpha-1H units and numerous side-chain 13C-1H groups in both OMTKY3 and OMTKY3*. The largest changes in the 13C chemical shift upon conversion of OMTKY3 to OMTKY3* occur at or near the reactive site, and tend toward values observed in small peptides. Moreover, the side-chain prochiral methylene protons attached to the C gamma of Glu19 and C delta of Arg21 show nonequivalent chemical shifts in OMTKY3 but more equivalent chemical shifts in OMTKY3*. These results suggest that the reactive site region becomes less ordered upon hydrolysis of the Leu18-Glu19 peptide bond. Comparison of 13C alpha chemical shifts of OMTKY3 and bovine pancreatic trypsin inhibitor [D. Brühuiler and G. Wagner (1986) Biochemistry 25, 5839-5843; N. R. Nirmala and G. Wagner (1988) Journal of the American Chemical Society, 110, 7557-7558] with small peptide values [R. Richarz and K. Wüthrich (1978) Biopolymers, 17, 2133-2141] suggests that 13C alpha chemical shifts of residues residing in helices are generally about 2 ppm downfield of resonances from nonhelical residues.  相似文献   

5.
Relationships between protein structure and ionization of carboxyl groups were investigated in 24 proteins of known structure and for which 115 aspartate and 97 glutamate pK(a) values are known. Mean pK(a) values for aspartates and glutamates are < or = 3.4 (+/-1.0) and 4.1 (+/-0.8), respectively. For aspartates, mean pK(a) values are 3.9 (+/-1.0) and 3.1 (+/-0.9) in acidic (pI < 5) and basic (pI > 8) proteins, respectively, while mean pK(a) values for glutamates are approximately 4.2 for acidic and basic proteins. Burial of carboxyl groups leads to dispersion in pK(a) values: pK(a) values for solvent-exposed groups show narrow distributions while values for buried groups range from < 2 to 6.7. Calculated electrostatic potentials at the carboxyl groups show modest correlations with experimental pK(a) values and these correlations are not improved by including simple surface-area-based terms to account for the effects of desolvation. Mean aspartate pK(a) values decrease with increasing numbers of hydrogen bonds but this is not observed at glutamates. Only 10 pK(a) values are > 5.5 and most are found in active sites or ligand-binding sites. These carboxyl groups are buried and usually accept no more than one hydrogen bond. Aspartates and glutamates at the N-termini of helices have mean pK(a) values of 2.8 (+/-0.5) and 3.4 (+/-0.6), respectively, about 0.6 units less than the overall mean values.  相似文献   

6.
The conformations of a polypeptide chain of turkey ovomucoid third domain and its modified form with split reactive site peptide bond Leu-18--Glu-19 have been determined by the literary two-dimensional nuclear Overhauser effect spectroscopy data using an earlier suggested method. It has been found that the polypeptide domain backbone contains an alpha-helical fragment (residues 32-47), five segments having extended conformation (1-5, 11-17, 19-25, 29-31, 48-50) and beta-turn type 1 (26-29). Segments 23-26, 28-31 and 50-51 form an antiparallel beta-structure. Conformational states of the residues entering irregular domain segments have been analysed. Splitting of the reactive site peptide bond Leu-18--Glu-19 is shown to cause insignificant changes in the conformations of a number of amino acid residues except for Val-6 and Asp-7 ones which undergo essential conformational alterations. The conformations of domain in solution and of japanese quail ovomucoid third domain in crystal have been compared. The root-mean-square deviations for phi and psi angles indicate their high similarity. The conformations of turkey ovomucoid third domain and proteinase inhibitor BUSI IIA in solution have been analysed. In spite of moderate (50%) homology of primary structures, some 75% of amino acid residues are shown to have close conformational phi and psi parameters.  相似文献   

7.
Two-dimensional proton NMR experiments have been used to sequentially assign resonances to all of the peptide backbone protons of turkey ovomucoid third domain (OMTKY3) except those of the N-terminal alpha-amino group whose signal was not resolved owing to exchange with the solvent. Assignments also have been made for more than 80% of the side-chain protons. Two-dimensional chemical shift correlated spectroscopy (COSY), relayed coherence transfer spectroscopy (RELAY), and two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) were used to identify the spin systems of almost half of the residues prior to sequential assignment. Assignments were based on two-dimensional nuclear Overhauser enhancements observed between adjacent residues. The secondary structure of OMTKY3 in solution was determined from additional assigned NOESY cross-peaks; it closely resembles the secondary structure determined by single-crystal X-ray diffraction of OMTKY3 in complex with Streptomyces griseus proteinase B [Fujinaga, M., Read, R.J., Sielecki, A., Ardelt, W., Laskowski, M., Jr., & James, M.N.G. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4868-4872]. The NMR data provide evidence for three slowly exchanging amide protons that were not identified as hydrogen-bond donors in the crystal structure.  相似文献   

8.
The molecular structure of the complex between bovine pancreatic alpha-chymotrypsin (EC 3.4.4.5) and the third domain of the Kazal-type ovomucoid from Turkey (OMTKY3) has been determined crystallographically by the molecular replacement method. Restrained-parameter least-squares refinement of the molecular model of the complex has led to a conventional agreement factor R of 0.168 for the 19,466 reflections in the 1.8 A (1 A = 0.1 nm) resolution shell [I greater than or equal to sigma (I)]. The reactive site loop of OMTKY3, from Lys13I to Arg21I (I indicates inhibitor), is highly complementary to the surface of alpha-chymotrypsin in the complex. A total of 13 residues on the inhibitor make 113 contacts of less than 4.0 A with 21 residues of the enzyme. A short contact (2.95 A) from O gamma of Ser195 to the carbonyl-carbon atom of the scissile bond between Leu18I and Glu19I is present; in spite of it, this peptide remains planar and undistorted. Analysis of the interactions of the inhibitor with chymotrypsin explains the enhanced specificity that chymotrypsin has for P'3 arginine residues. There is a water-mediated ion pair between the guanidinium group on this residue and the carboxylate of Asp64. Comparison of the structure of the alpha-chymotrypsin portion of this complex with the several structures of alpha and gamma-chymotrypsin in the uncomplexed form shows a high degree of structural equivalence (root-mean-square deviation of the 234 common alpha-carbon atoms averages 0.38 A). Significant differences occur mainly in two regions Lys36 to Phe39 and Ser75 to Lys79. Among the 21 residues that are in contact with the ovomucoid domain, only Phe39 and Tyr146 change their conformations significantly as a result of forming the complex. Comparison of the structure of the OMTKY3 domain in this complex to that of the same inhibitor bound to a serine proteinase from Streptomyces griseus (SGPB) shows a central core of 44 amino acids (the central alpha-helix and flanking small 3-stranded beta-sheet) that have alpha-carbon atoms fitting to within 1.0 A (root-mean-square deviation of 0.45 A) whereas the residues of the reactive-site loop differ in position by up to 1.9 A (C alpha of Leu18I). The ovomucoid domain has a built-in conformational flexibility that allows it to adapt to the active sites of different enzymes. A comparison of the SGPB and alpha-chymotrypsin molecules is made and the water molecules bound at the inhibitor-enzyme interface in both complexes are analysed for similarities and differences.  相似文献   

9.
1. Aspergillopeptidase B rapidly hydrolyses the -Leu18-Glu19-reactive site peptide bond in turkey ovomucoid third domain (OMTKY3) within the pH-range of 4.0-8.4. The reaction proceeds to equilibrium between OMTKY3 and its modified form with the reactive site peptide bond cleaved (OMTKY3). 2. The dependence of the equilibrium constant (Khyd) on pH indicates that hydrolysis of the reactive site peptide bond apparently does not perturb the pK-values of any preexistent ionizable groups in OMTKY3. 3. The obtained Khyd0 value indicates that free energies of OMTKY3 and OMTKY3 are essentially the same. 4. Hydrolysis of the reactive site peptide bond by aspergillopeptidase B at neutral pH is about 60 times faster than the same reaction catalyzed by subtilisin (Carlsberg), the enzyme strongly inhibited by OMTKY3. 5. Resynthesis of the reactive site peptide bond at neutral pH catalyzed by aspergillopeptidase B (reverse reaction) is almost four orders of magnitude faster than the forward reaction.  相似文献   

10.
11.
Two kinds of the third domain, either with or without a carbohydrate chain, were prepared from chicken ovomucoid. The immunoreactivity of the domain preparations to human IgE antibody directed against ovomucoid was examined by using the sera from patients of egg allergy. About 30% of the serum antibody to ovomucoid reacted with the carbohydrate-containing domain, whereas little or no antibody with reactivity to the carbohydrate-free domain was detected, suggesting that the carbohydrate chain attached to the third domain played an important role in antigenic determinants of the carbohydrate-containing third domain against the human IgE antibody.  相似文献   

12.
We have used ultrasonic velocimetry, high-precision densimetry, and fluorescence spectroscopy, in conjunction with isothermal titration and differential scanning calorimetry, to characterize the binding of turkey ovomucoid third domain (OMTKY3) to alpha-chymotrypsin. We report the changes in volume and adiabatic compressibility that accompany the association of these proteins at 25 degrees C and pH 4.5. In addition, we report the changes in free energy, enthalpy, entropy, and heat capacity upon the binding of OMTKY3 to alpha-chymotrypsin over a temperature range of 20-40 degrees C. Our volume and compressibility data, in conjunction with X-ray crytsallographic data on the OMTKY3-alpha-chymotrypsin complex, suggest that 454(+/-22) water molecules are released to the bulk state upon the binding of OMTKY3 to alpha-chymotrypsin. Furthermore, these volumetric data suggest that the intrinsic compressibility of the two proteins decreases by 7%. At each temperature studied, OMTKY3 association with alpha-chymotrypsin is entropy driven with a large, unfavorable enthalpy contribution. The observed entropy of the binding reflects interplay between two very large favorable and unfavorable terms. The favorable term reflects an increase in the hydrational entropy resulting from release to the bulk of 454 water molecules. The unfavorable term is related to a decrease in the configurational entropy and, consequently, a decrease in the conformational dynamics of the two proteins. In general, we discuss the relationship between macroscopic and microscopic properties, in particular, identifying and quantifying the role of hydration in determining the thermodynamics of protein recognition as reflected in volumetric and calorimetric parameters.  相似文献   

13.
Ovomucoid, a major allergen in hen's egg white, consists of three tandem domains. The third domain (DIII) cDNA was sublconed into pGEMT-vector and the resultant plasmid (pGEMDIII) was inserted into a pGEM-4T-2 glutathione-S-transferase (GST) fusion vector. The GST-DIII fusion protein was expressed in Escherichia coli. The 56-residue fragment corresponding to DIII (Leu131-Cys186) was liberated using cyanogen bromide to cleave off the GST that had been hydrolized with thrombin, which left an additional peptide at the terminus of the recombinant protein. Measurement of circular dichroism spectra indicated that the recombinant third domain (DIII*) had a structure that was slightly less compact than that of the native form. Immunoblot analysis showed that the human IgE binding activity of DIII* was identical to that of native DIII, while its activity was significantly increased to IgE antibodies from egg-allergic patients when tested with an enzyme-linked immunosorbent assay. These results indicate that recombinant DIII* has similar sequential epitopes, but may have more predominant conformational epitopes than native analogues. This might have important implications in egg-allergic reactions.  相似文献   

14.
G I Rhyu  J L Markley 《Biochemistry》1988,27(7):2529-2539
The solution structure of modified turkey ovomucoid third domain (OMTKY3*) was investigated by high-resolution proton NMR techniques. OMTKY3* was obtained by enzymatic hydrolysis of the scissile reactive site peptide bond (Leu18-Glu19) in turkey ovomucoid third domain (OMTKY3). All of the backbone proton resonances were assigned to sequence-specific residues except the NH's of Leu1 and Glu19, which were not observed. Over 80% of the side-chain protons also were assigned. The secondary structure of OMTKY3*, as determined from assigned NOESY cross-peaks and identification of slowly exchanging amide protons, contains antiparallel beta-sheet consisting of three strands (residues 21-25, 28-32, and 49-54), one alpha-helix (residues 33-44), and one reverse turn (residues 26-28). This secondary structure closely resembles that of OMTKY3 in solution [Robertson, A. D., Westler, W. M., & Markley, J. L. (1988) Biochemistry (preceding paper in this issue)]. On the other hand, changes in the tertiary structure of the protein near to and remote from the cleavage site are indicated by differences in the chemical shifts of numerous backbone protons of OMTKY3 and OMTKY3*.  相似文献   

15.
Results of the inhibition of alpha-lytic proteinase by two standard mechanism serine proteinase inhibitors, turkey ovomucoid third domain (OMTKY3) and eglin C, and many of their variants are presented. Despite similarities, including an identical P1 residue (Leu) in their primary contact regions, OMTKY3 and eglin C have vastly different association equilibrium constants toward alpha-lytic proteinase, with Ka values of 1.8 x 10(3) and 1.2 x 10(9) M(-1), respectively. Although 12 of the 13 serine proteinases tested in our laboratory for inhibition by OMTKY3 and eglin C are more strongly inhibited by the latter, the million-fold difference observed here with alpha-lytic proteinase is the largest we have seen. The million-fold stronger inhibition by eglin C is retained when the Ka values of the P1 Gly, Ala, Ser, and Ile variants of OMTKY3 and eglin C are compared. Despite the small size of the S1 pocket in alpha-lytic proteinase, interscaffolding additivity for OMTKY3 and eglin C holds well for the four P1 residues tested here. To better understand this difference, we measured Ka values for other OMTKY3 variants, including some that had residues elsewhere in their contact region that corresponded to those of eglin C. Assuming intrascaffolding additivity and using the Ka values obtained for OMTKY3 variants, we designed an OMTKY3-based inhibitor of alpha-lytic proteinase that was predicted to inhibit 10,000-fold more strongly than wild-type OMTKY3. This variant (K13A/P14E/L18A/R21T/N36D OMTKY3) was prepared, and its Ka value was measured against alpha-lytic proteinase. The measured Ka value was in excellent agreement with the predicted one (1.1 x 10(7) and 2.0 x 10(7) M(-1), respectively). Computational protein docking results are consistent with the view that the backbone conformation of eglin C is not significantly altered in the complex with alpha-lytic proteinase. They also show that the strong binding for eglin C correlates well with more favorable atomic contact energy and desolvation energy contributions as compared to OMTKY3.  相似文献   

16.
W Bode  A Z Wei  R Huber  E Meyer  J Travis    S Neumann 《The EMBO journal》1986,5(10):2453-2458
Orthorhombic crystals diffracting beyond 1.7 A resolution, have been grown from the stoichiometric complex formed between human leukocyte elastase (HLE) and the third domain of turkey ovomucoid inhibitor (OMTKY3). The crystal and molecular structure has been determined with the multiple isomorphous replacement technique. The complex has been modeled using the known structure of OMTKY3 and partial sequence information for HLE, and has been refined. The current crystallographic R-value is 0.21 for reflections from 25 to 1.8 A resolution. HLE shows the characteristic polypeptide fold of trypsin-like serine proteinases and consists of 218 amino acid residues. However, several loop segments, mainly arranged around the substrate binding site, have unique conformations. The largest deviations from the other vertebrate proteinases of known spatial structure are around Cys168. The specificity pocket is constricted by Val190, Val216 and Asp226 to preferentially accommodate medium sized hydrophobic amino acids at P1. Seven residues of the OMTKY3-binding segment are in specific contact with HLE. This interaction and geometry around the reactive site are similar as observed in other complexes. It is the first serine proteinase glycoprotein analysed, having two sugar chains attached to Asn159 and to residue 109.  相似文献   

17.
Ovomucoids were isolated from 25 avian species other than the 101 studied in Laskowskiet al. (1987,Biochemistry 26, 202–221). These were subjected to limited proteolysis with an appropriate enzyme, and connecting peptide extended ovomucoid third domains were isolated and sequenced to the end in a protein sequencer. Of the 25 new sequences, 13 duplicate ones were already known, and 12 are unique. Probably the most striking findings are a Pro14 Ser14 replacement in weka, an Ala14Thr15 replacement in Bulwer's pheasant, the discovery of two additional amino acid residues Ile18 and Gly18 at the P1 reactive site position in Kalij pheasant and tawny frogmouth, respectively, and the first finding of a negative (Glu34) rather than positive (Lys34 or Arg34) amino acid residue at the NH2 terminus of the helix in caracara ovomucoid third domain. These results complete the determination of all the sequences of ovomucoid third domains in the four species genusGallus, in the five species genusSyrmaticus, and in the two species generaAix andPavo.  相似文献   

18.
Experimentally determined mean pK(a) values of carboxyl residues located at the N-termini of alpha-helices are lower than their overall mean values. Here, we perform three types of analyses to account for this phenomenon. We estimate the magnitude of the helix macrodipole to determine its potential role in lowering carboxyl pK(a) values at the N-termini. No correlation between the magnitude of the macrodipole and the pK(a) values is observed. Using the pK(a) program propKa we compare the molecular surroundings of 18 N-termini carboxyl residues versus 233 protein carboxyl groups from a previously studied database. Although pK(a) lowering interactions at the N-termini are similar in nature to those encountered in other protein regions, pK(a) lowering backbone and side-chain hydrogen bonds appear in greater number at the N-termini. For both Asp and Glu, there are about 0.5 more hydrogen bonds per residue at the N-termini than in other protein regions, which can be used to explain their lower than average pK(a) values. Using a QM-based pK(a) prediction model, we investigate the chemical environment of the two lowest Asp and the two lowest Glu pK(a) values at the N-termini so as to quantify the effect of various pK(a) determinants. We show that local interactions suffice to account for the acidity of carboxyl residues at the N-termini. The effect of the helix dipole on carboxyl pK(a) values, if any, is marginal. Backbone amide hydrogen bonds constitute the single biggest contributor to the lowest carboxyl pK(a) values at the N-termini. Their estimated pK(a) lowering effects range from about 1.0 to 1.9 pK(a) units.  相似文献   

19.
Electrostatic interactions in proteins can be dissected experimentally by determining the pKa values of their constituent ionizable amino acids. To complement previous studies of the glutamic acid and histidine residues in Bacillus circulans xylanase (BCX), we have used NMR methods to measure the pKa s of the seven aspartic acids and the C-terminus of this protein. The pKa s of these carboxyls are all less than the corresponding values observed with random coil polypeptides, indicating that their ionization contributes favorably to the stability of the folded enzyme. In general, the aspartic acids with the most reduced pKa s are those with limited exposure to the solvent and a high degree of conservation among homologous xylanases. Most dramatically, Asp 83 and Asp 101 have pKa s < 2 and thus remain deprotonated in native BCX under all conditions examined. Asp 83 is completely buried, forming a strong salt bridge with Arg 136. In contrast, Asp 101 is located on the surface of the protein, stabilized in the deprotonated form by an extensive network of hydrogen bonds involving an internal water molecule and the neutral side-chain and main-chain atoms of Ser 100 and Thr 145. These data provide a complete experimental database for theoretical studies of the ionization behavior of BCX under acidic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号