首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although ischemia-reperfusion (I/R) has been shown to affect subcellular organelles that regulate the intracellular Ca2+ concentration ([Ca2+]i), very little information regarding the Ca2+ handling ability of cardiomyocytes obtained from I/R hearts is available. To investigate changes in [Ca2+]i due to I/R, rat hearts in vitro were subjected to 10-30 min of ischemia followed by 5-30 min of reperfusion. Cardiomyocytes from these hearts were isolated and purified; [Ca2+]i was measured by employing fura-2 microfluorometry. Reperfusion for 30 min of the 20-min ischemic hearts showed attenuated cardiac performance, whereas basal [Ca2+]i as well as the KCl-induced increase in [Ca2+]i and isoproterenol (Iso)-induced increase in [Ca2+]i in cardiomyocytes remained unaltered. On the other hand, reperfusion of the 30-min ischemic hearts for different periods revealed marked changes in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i without any alterations in the KCl-induced increase in [Ca2+]i or S(-)-BAY K 8644-induced increase in [Ca2+]i. The I/R-induced alterations in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i in cardiomyocytes were attenuated by an antioxidant mixture containing superoxide dismutase and catalase as well as by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2 for 30 min. These results suggest that abnormalities in basal [Ca2+]i as well as mobilization of [Ca2+]i upon beta-adrenoceptor stimulation in cardiomyocytes are dependent on the duration of ischemic injury to the myocardium. Furthermore, Ca2+ handling defects in cardiomyocytes appear to be mediated through oxidative stress in I/R hearts.  相似文献   

2.
X Ma  H Liu  SR Foyil  RJ Godar  CJ Weinheimer  A Diwan 《Autophagy》2012,8(9):1394-1396
Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of 'flux' through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is 'ineffective' in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, 'adequate' autophagy, attenuates reoxygenation-induced cell death.  相似文献   

3.
《Autophagy》2013,9(9):1394-1396
Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of ‘flux’ through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is ‘ineffective’ in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, ‘adequate’ autophagy, attenuates reoxygenation-induced cell death.  相似文献   

4.
High fructose-fed (HFF) rat model is known to develop the insulin-resistant syndrome with a very similar metabolic profile to the human X syndrome. Such metabolic modifications have been associated with a high incidence of cardiovascular disease. The role of free radical attack in diabetes mellitus and its cardiovascular complications have been abundantly documented. The present study examined the susceptibility to myocardial ischemic injury and the involvement of free radical attack and/or protection in the metabolic disorders of high FF rats. Rats were divided into two experimental groups that received diet for 4 weeks: a control group (C, n=28) receiving a standard diet and a HFF group (FF, n=28), in which 58% of the total carbohydrate was fructose. The euglycemic clamp technique was performed to assess insulin resistance. For the ischemia-reperfusion procedure, rat hearts were isolated and perfused at constant pressure before they were subjected to a 30-min occlusion of the left coronary artery followed by 120 mins of reperfusion. Hemodynamic parameters were measured throughout the protocol. Infarct-to-risk ratio (I/R) was assessed at the end of the protocol by 2,3,4-triphenyltetrazolium chloride staining and planimetric analysis. Lipid peroxidation, antioxidant enzyme activity, level of vitamin E, and trace element status were measured in blood samples from both groups. Rats of the FF group developed an insulin resistance indicated by the glucose infusion rate, which was decreased by 47%. Infarct size was significantly reduced in rats from the FF group (19.9% +/- 6.6%) compared to rats from the control group (34.6% +/- 4.9%), and cardiac functional recovery at reperfusion was improved in the FF group. Lipid peroxidation and oxidative stress were higher in the FF group, as indicated by higher malonedialdehyde level, whereas plasma vitamin E/triacylglycerol ratio was also enhanced in this group. This study indicates that fructose feeding affords protection against in vitro ischemia-reperfusion injury, potentially implicating vitamin E.  相似文献   

5.
Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self‐renewal and showed a reduced capacity to differentiate in vitro. Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co‐culture of wild‐type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells.  相似文献   

6.
Mutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson–Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle‐specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole‐body energy expenditure, leading to premature death. Intriguingly, sarcolipin (Sln), an endoplasmic reticulum (ER)‐associated protein involved in heat production, is upregulated in progerin‐expressing and Lmna knockout (Lmna?/?) skeletal muscle. The depletion of Sln accelerated the early death of Lmna?/? mice. An examination at the molecular level revealed that progerin recruits Sln and Calnexin to the nuclear periphery. Furthermore, progerin‐expressing myoblasts presented enhanced store‐operated Ca2+ entry, as well as increased co‐localization of STIM1 and ORAI1. These findings suggest that progerin dysregulates calcium homeostasis through an interaction with a subset of ER‐associated proteins, resulting in thermogenic and metabolic abnormalities.  相似文献   

7.
The three-vessel occlusion model of Kameyama et al. (Kameyama, M., Suzuki, J., Shirane, R. and Ogawa, A. (1985) Stroke 16, 489-493) was adapted with modifications to induce complete reversible rat forebrain ischemia. A fast and simple procedure for the isolation and purification of rat brain mitochondria, which provides high yield, is described. Mitochondria isolated from ischemic brain (12-30 min ischemia) exhibited decreases in State 3 respiratory rates of approx. 70% with NAD-linked respiratory substrates. Less effect was observed with succinate and rotenone. The State 4 respiratory activity remained near control levels except at 15 min of ischemia (25% increase) with NAD-linked substrates. Similarly, with succinate and rotenone, an approx. 30% increase in State 4 activity was observed at 20 min of ischemia. Consequently, the respiratory control indices (RCIs) were decreased. Both the respiratory rates and RCIs could be restored to near control levels upon the addition of EGTA(EDTA) or ruthenium red to the assay mixture. Analysis employing fura-2 as a Ca2+ probe, indicated a great decrease in the first order rate constant for Ca2+ uptake of ischemic mitochondria and a significant increase in Ca2+ homeostasis with an increase in the cytosolic Ca2+ concentration which results in excessive association of Ca2+ on the mitochondrial membrane and an inhibition of the respiratory chain-linked oxidative phosphorylation and Ca(2+)-transport activity of forebrain mitochondria. These deficits are proportional to the duration of ischemia.  相似文献   

8.
In the present study, we examined the time-dependent changes in the mitochondrial glutathione status and ATP generation capacity in the myocardium as well as the susceptibility of the myocardium to ischemia-reperfusion (IR) injury in female Sprague Dawley rats treated with a single pharmacological dose (1.2 mmol/kg) of schisandrin B (Sch B). Sch B treatment produced a time-dependent enhancement in myocardial mitochondrial glutathione status, as evidenced by increases in myocardial mitochondrial reduced glutathione (GSH) level and activities of glutathione reductase, Se-glutathione peroxidase (GPX) and glutathione S-transferases, with the response reaching maximum at 48 h post-dosing and then declining gradually to the control level at 96 h post-dosing. The enhancement of mitochondrial glutathione status was associated with an increase in myocardial ATP generation capacity, with the value peaking at 72 h post-dosing. These beneficial effects of Sch B on the myocardium was paralleled by a time-dependent decrease in the susceptibility to IR injury, with the maximum protection demonstrable at 48 h post-dosing. The cardioprotection was associated with increases in myocardial GSH level and activities of glutathione antioxidant enzymes (except for GPX whose activity was suppressed) as well as tissue ATP level/ATP generation capacity. The results suggest that Sch B treatment can precondition the myocardium by enhancing the mitochondrial glutathione status and ATP generation capacity, thereby protecting against IR injury.  相似文献   

9.
Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-x(L) protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

10.
Abstract

Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-xL protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

11.
Recently, we reported that exogenous administration of Met(5)-enkephalin (ME) for 24 h reduces infarct size after ischemia-reperfusion in rabbits. In the present study, we tested whether ME-induced cardioprotection is exhibited in murine hearts and whether chronic infusion of this peptide can render hearts tolerant to ischemia. Barbiturate-anesthetized open-chest mice (C57BL/6J) were subjected to regional myocardial ischemia-reperfusion (45 min of occlusion and 20 min of reperfusion). Mice received saline vehicle or ME for 24 h or 2 wk before undergoing regional myocardial ischemia-reperfusion or for 24 h followed by a 24-h delay before regional myocardial ischemia-reperfusion. Infarct size was measured with propidium iodide and is expressed as a percentage of the area at risk. Infarcts were smaller after infusion of ME for 24 h than with vehicle control: 49.2 +/- 9.0% vs. 22.2 +/- 3.2% (P < 0.01). In contrast, administration of ME for 2 wk failed to elicit cardioprotection: 36.5 +/- 9.1% and 41.4 +/- 8.2% for control and ME, respectively (P = not significant). When a 24-h delay was imposed between the end of drug treatment and the onset of the ischemic insult, cardioprotection was lost: 38.5 +/- 6.1% and 42.8 +/- 6.6% for control and ME, respectively (P = not significant). Chronic sustained exogenous infusion of the endogenously produced opioid peptide ME is associated with loss of the cardioprotection that is observed with 24 h of infusion. Furthermore, in this in vivo murine model, ME failed to induce delayed tolerance to myocardial ischemia-reperfusion.  相似文献   

12.
To examine whether nutritional supplementation of coenzyme Q(10) (CoQ(10)) can reduce myocardial ischemia-reperfusion injury, a group of swine was fed a regular diet supplemented with CoQ(10) (5 mg x kg(-1) x day(-1)) for 30 days. Another group of pigs that were fed a regular diet supplemented with placebo served as a control. After 30 days, isolated in situ pig hearts were prepared and hearts were perfused with a cardiopulmonary pump system. Each heart was subjected to 15 min of regional ischemia by snaring of the left anterior descending coronary artery, followed by 60 min of hypothermic cardioplegic global ischemia and 120 min of reperfusion. After the experiments were completed, myocardial infarct size was measured by triphenyltrazolium chloride staining methods. Postischemic left ventricular contractile function was better recovered in the CoQ(10) group than in the control group of pigs. CoQ(10)-fed pigs revealed less myocardial infarction and less creatine kinase release from the coronary effluent compared with control pigs. The experimental group also demonstrated a smaller amount of malonaldehyde in the coronary effluent and a higher content of the endogenous antioxidants ascorbate and thiol. Significant induction of the expression of ubiquitin mRNA was also found in the hearts of the CoQ(10)-fed group. The results of this study demonstrate that nutritional supplementation of CoQ(10) renders the hearts resistant to ischemia-reperfusion injury, probably by reducing the oxidative stress.  相似文献   

13.
Ischemic preconditioning (IP) reduces infarct size in young animals; however, its impact on aging is underinvestigated. The effect of variations in IP stimuli was studied in young, middle-aged, and aged rat hearts. Isolated hearts underwent 35 min of regional ischemia and 120 min of reperfusion. Hearts with IP were subjected to either one ischemia-reperfusion cycle (5 min of ischemia and 5 min of reperfusion per cycle) or three successive cycles before 35 min of regional ischemia. Additional studies investigated the effects of pharmacological preconditioning in aged hearts using the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine, the protein kinase C analog 1,2-dioctanoyl-sn-glycerol, and the mitochondrial ATP-sensitive potassium (K(ATP))-channel opener diazoxide. Infarct sizes indicated that the aged rat heart could not be preconditioned via ischemic or pharmacological means. The middle-aged rat heart had a blunted IP response compared with the young adult (only an increased IP stimulus caused a significant reduction in infarct size). These results suggest that there are defects within the IP signaling cascade of the aged heart. Clinical relevance is important if we are to use any IP-like mimetics to the benefit of an aging population.  相似文献   

14.
In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.  相似文献   

15.
He X  Bi XY  Wang H  Yu XJ  Zang WJ 《生理学报》2012,64(3):321-326
Ischemia-reperfusion injury (IRI) has been recognized as a serious problem for therapy of cardiovascular diseases. Calcium regulation appears to be an important issue in the study of IRI. This article reviews calcium regulation in myocardial and vascular IRI, including the calcium overload and calcium sensitivity in IRI. This review is focused on the key players in Ca(2+) handling in IRI, including membrane damage resulting in increase in Ca(2+) influx, reverse-mode of Na(+)-Ca(2+) exchangers leading to increased Ca(2+) entry, the decreased activity of sarcoplasmic reticulum (SR) Ca(2+)-ATPase causing SR Ca(2+) uptake dysfunction, and increased activity of Rho kinase. These key players in Ca(2+) homeostasis will provide promising strategies and potential targets for therapy of cardiovascular IRI.  相似文献   

16.
There is evidence to suggest that cell injury induced in alveolar macrophages (AM) following phagocytic activation by silica particles may be mediated through changes in intracellular free calcium [Ca2+]i. However, the mechanism of silica- induced cytotoxicity relative to [Ca2+]i overloading is not yet clear. To provide a better insight into this mechanism, isolated rat AMs were exposed to varying concentrations of crystalline silica (particle size < 5 μm in diameter) and the fluctuation in their [Ca2+]i and cell integrity were quantitatively monitored with the fluorescent calcium probe, Fura-2 AM, and the membrane integrity indicator, propidium iodide (PI). Results from this study indicate that silica can rapidly increase [Ca2+]i in a dose-dependent manner with a characteristic transient calcium rise at low doses (<0.1 mg/ml) and an elevated and sustained rise at high doses (>0.1 mg/ml). Depletion of extracellular calcium [Ca2+]o markedly inhibited the [Ca2+]i rise (≈90%), suggesting that Ca2+ influx from extracellular source is a major mechanism for silica-induced [Ca2+]i rise. When used at low doses but sufficient to cause a transient [Ca2+]i rise, silica did not cause significant increase in cellular PI uptake during the time of study, suggesting the presevation of membrane integrity of AMs under these conditions. At high doses of silica, however, a marked increase in PI nuclear fluorescence was observed. Depletion of [Ca2+]o greatly inhibited cellular PI uptake, induced by 0.1 mg/ml or higher doses of silica. This suggests that Ca2+ influx, as a result of silica activation, is associated with cell injury. Indeed, our results further demonstrated that the low dose effect of silica on Ca2+ influx is inhibited by the Ca2+ channel blocker nifedipine. At high doses of silica (>0.1 mg/ml), cell injury was not prevented by nifedipine or extracellular Ca2+ depletion, suggesting that other cytotoxic mechanisms, i.e., nonspecific membrane damage due to lipid peroxidation, are also responsible for the silica-induced cell injury. Silica had no significant effect on cellular ATP content during the time course of the study, indicating that the observed silica-induced [Ca2+]i rise was not due to the impairment of Ca2+-pumps, which restricts Ca2+ efflux. Pretreatment of the cells with cytochalasin B to block phagocytosis failed to prevent the effect of silica on [Ca2+]i rise. Taken together, these results suggest that the elevation of [Ca2+]i caused by silica is due mainly to Ca2+ influx through plasma membrane Ca2+ channels and nonspecific membrane damage (at high doses). Neither ATP depletion nor Ca2+ leakage during phagocytosis was attributed to the silica-induced [Ca2+]i rise. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Platelets (Plt) accumulate in reperfused myocardium but their effect on myocardial necrosis has not been established. We tested the hypothesis that the effect of Plt depends on their activation status. Pig Plt were obtained before 48 min of coronary occlusion (pre-CO-Plt), 10 min after reperfusion (R-Plt), or after a 60-min sham operation (sham-Plt). Plt were infused into isolated rat hearts (n = 124) and subsequently submitted to 60 min of ischemia and 60 min of reperfusion. P-selectin expression was higher (P = 0.02) in R-Plt than in pre-CO-Plt or sham-Plt. Lactate dehydrogenase (LDH) release during reperfusion was similar in hearts receiving pre-CO-Plt, sham-Plt, or no Plt, but R-Plt increased LDH release by 60% (P = 0.004). Activation of pre-CO-Plt with thrombin increased P-selectin expression and LDH release (P < 0.001), and these results were unaffected by tirofiban. There was a close correlation between P-selectin expression and LDH release (r = 0.84; P < 0.001), and myocardial Plt accumulation (r = 0.85; P < 0.001). We conclude that the deleterious effect of Plt on reperfused myocardium depends on their activation status as represented by P-selectin expression, which is enhanced by ischemia-reperfusion.  相似文献   

18.
Activation of MAPK ERK1/2 has been shown to play an important role in Th1/Th2 polarization and in regulating cytokine production from APCs. The ERK family consists of two members ERK1 and ERK2, which share approximately 84% identity at the amino acid level and can compensate for each other for most functions. Despite these features, ERK1 and ERK2 do serve different functions, but there is very little information on the contribution of individual forms of ERK on innate and adaptive immune responses. In this study, we describe that ERK1(-/-) mice display a bias toward Th1 type immune response. Consistent with this observation, dendritic cells from ERK1(-/-) mice show enhanced IL-12p70 and reduced IL-10 secretion in response to TLR stimulation. Furthermore, serum from ERK1(-/-) mice had 100-fold higher total IgG2b and 10-fold higher total IgG2a and IgG1 Ab isotype titers, and enhanced levels of Ag-specific IgG2b Ab titers, compared with wild-type mice. Consistent with this enhanced Th1 bias, ERK1(-/-) mice showed enhanced susceptibility to myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) and developed EAE earlier, and with increased severity, compared with wild-type mice. Importantly, there was a profound skewing toward Th1 responses in ERK1(-/-) mice, with higher IFN-gamma production and lower IL-5 production in MOG35-55-primed T cells, as well as an augmentation in the MOG-specific IgG2a and IgG2b Th1 Ab isotypes. Finally, increased infiltrating cells and myelin destruction was observed in the spinal cord of ERK1(-/-) mice. Taken together, our data suggest that deficiency of ERK1 biases the immune response toward Th1 resulting in increased susceptibility to EAE.  相似文献   

19.
Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K(-/-) mice were generated and found to be similar to wild-type controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K(-/-) mice. Receptor-mediated Ca(2+) flux was decreased in T cells, neutrophils, and macrophages from Sel K(-/-) mice compared with controls. Ca(2+)-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K(-/-) mice compared with that in cells from controls. West Nile virus infections were performed, and Sel K(-/-) mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, West Nile virus-infected Sel K(-/-) mice demonstrated significantly lower survival (2 of 23; 8.7%) compared with that of wild-type controls (10 of 26; 38.5%). These results establish Sel K as an endoplasmic reticulum-membrane protein important for promoting effective Ca(2+) flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses.  相似文献   

20.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号