首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular rotors are fluorescent molecules with a viscosity-sensitive quantum yield that are often used to measure viscosity changes in cell membranes and liposomes. However, commercially available molecular rotors, such as DCVJ (1) do not localize in cell membranes but rapidly migrate into the cytoplasm leading to unreliable measurements of cell membrane viscosity. To overcome this problem, we synthesized molecular rotors covalently attached to a phospholipid scaffold. Attaching the rotor group to the hydrophobic end of phosphatidylcholine (PC) did not affect the rotor's viscosity sensitivity and allowed adequate integration into artificial bilayers as well as complete localization in the plasma membrane of an endothelial cell line. Moreover, these new rotors enabled the monitoring of phospholipid transition temperature. However, attachment of the rotor groups to the hydrophilic head of the phospholipid led to a partial loss of viscosity sensitivity. The improved sensitivity and exclusive localization in the cell plasma membrane exhibited by the phospholipid-bound molecular rotors suggest that these probes can be used for the study of membrane microviscosity.  相似文献   

2.
Blood viscosity changes with many pathologic conditions, but its importance has not been fully investigated because the current methods of measurement are poorly suited for clinical applications. The use of viscosity-sensitive fluorescent molecular rotors to determine fluid viscosity in a nonmechanical manner has been investigated recently, but it is unknown how the precision of the fluorescence-based method compares to established mechanical viscometry. Human blood plasma viscosity was modulated with high-viscosity plasma expanders, dextran, pentastarch, and hetastarch. The samples were divided into a calibration and a test set. The relationship between fluorescence emission and viscosity was established using the calibration set. Viscosity of the test set was determined by fluorescence and by cone-and-plate viscometer, and the precision of both methods compared. Molecular rotor fluorescence intensity showed a power law relationship with solution viscosity. Mechanical measurements deviated from the theoretical viscosity value by less than 7.6%, while fluorescence-based measurements deviated by less than 6%. The average coefficient of variation was 6.9% (mechanical measurement) and 3.4% to 3.8% (fluorescence-based measurement, depending on the molecular rotor used). Fluorescence-based viscometry exhibits comparable precision to mechanical viscometry. Fluorescence viscometry does not apply shear and is therefore more practical for biofluids which have apparent non-Newtonian properties. In addition, fluorescence instrumentation makes very fast serial measurements possible, thus promising new areas of application in laboratory and clinical settings.  相似文献   

3.
Fluorescent molecular rotors belong to a group of twisted intramolecular charge transfer complexes (TICT) whose photophysical characteristics depend on their environment. In this study, the influence of solvent polarity and viscosity on several representative TICT compounds (three Coumarin derivatives, 4,4-dimethylaminobenzonitrile DMABN, 9-(dicyanovinyl)-julolidine DCVJ), was examined. While solvent polarity caused a bathochromic shift of peak emission in all compounds, this shift was lowest in the case of molecular rotors. Peak intensity was influenced strongly by solvent viscosity in DMABN and the molecular rotors, but polarity and viscosity influences cannot be separated with DMABN. Coumarins, on the other hand, did not show viscosity sensitivity. This study shows the unique suitability of molecular rotors as fluorescent viscosity sensors.  相似文献   

4.
BACKGROUND: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. METHOD OF APPROACH: Fluorescence of aqueous starch solutions with a molecular rotor in solution was related to viscosity obtained in a cone-and-plate viscometer. RESULTS: In dextran solutions, emission intensity was found to follow a power-law relationship with viscosity. Fluorescence in hydroxyethylstarch solutions showed biexponential behavior with different exponents at viscosities above and below 1.5 mPa s. Quantum yield was generally higher in hydroxyethylstarch than in dextran solutions. The power-law relationship was used to backcalculate viscosity from intensity with an average precision of 2.2% (range of -5.5% to 5.1%). CONCLUSIONS: This study indicates that hydrophilic molecular rotors are suitable as colloid solution viscosity probes after colloid-dependent calibration.  相似文献   

5.
Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield. On the molecular scale, the fluorescence emission is a function of the local free volume, which in turn is related to the local micro-viscosity. Membrane viscosity, and the inverse; fluidity, are characteristic terms used to describe the ease of movement withing the membrane. Often, changes in membrane viscosity govern intracellular processes and are indicative of a disease state. Molecular rotors have been used to investigate viscosity changes in liposomes and cells, but accuracy is affected by local concentration gradients and sample optical properties. We have developed self-calibrating ratiometric molecular rotors to overcome this challenge and integrated the new molecules into a DLPC liposome model exposed to the membrane-fluidizing agent propanol. We show that the ratiometric emission intensity linearly decreases with the propanol exposure and that the ratiometric intensity is widely independent of the total liposome concentration. Conversely, dye concentration inside liposomes influences the sensitivity of the system. We suggest that the new self-calibrating dyes can be used for real-time viscosity sensing in liposome systems with the advantages of lifetime measurements, but with low-cost steady-state instrumentation.  相似文献   

6.
Many disease states have associated blood viscosity changes. Molecular rotors, fluorescent molecules with viscosity sensitive quantum yields, have recently been investigated as a new method for biofluid viscosity measurement. Current viscometer measurements are complicated by proteins adhering to surfaces and forming air-surface layers. It is unknown at this time what effects proteins may have on biofluid viscosity measurements using molecular rotors. To answer this question, binding affinities to blood plasma proteins were investigated by equilibrium dialysis for four hydrophilic molecular rotors. Aqueous solutions of 9-[(2-cyano-2-hydroxy-carbonyl)vinyl]julolidine (CCVJ) and three derivatives were prepared and dialyzed against solutions of bovine source albumin, fibrinogen and immunoglobulin G approximating normal physiologic concentrations and fresh-frozen human plasma. After equilibration, dye concentration on each side of the dialysis membrane was assessed by spectrophotometry. The relative binding affinity of the four dyes to the proteins and to the plasma was compared. Affinity of all dyes was highest for albumin. The bound dye fraction showed little change in relation to protein concentration in the physiological concentration range. Diol, the most hydrophilic molecular rotor tested showed the lowest affinity for albumin. This study indicates that hydrophilic molecular rotors are well-suited for biofluid viscosity measurement.  相似文献   

7.
Membrane viscosity is a key parameter in cell physiology, cell function, and cell signaling. The most common methods to measure changes in membrane viscosity are fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy. Recent interest in a group of viscosity sensitive fluorophores, termed molecular rotors, led to the development of the highly membrane-compatible (2-carboxy-2-cyanovinyl)-julolidine farnesyl ester (FCVJ). The purpose of this study is to examine the fluorescent behavior of FCVJ in model membranes exposed to various agents of known influence on membrane viscosity, such as alcohols, dimethyl sulfoxide (DMSO), cyclohexane, cholesterol, and nimesulide. The influence of key agents (propanol and cholesterol) was also examined using FRAP, and backcalculated viscosity change from FCVJ and FRAP was correlated. A decrease of FCVJ emission was found with alcohol treatment (with a strong dependency on the chain length and concentration), DMSO, and cyclohexane, whereas cholesterol and nimesulide led to increased FCVJ emission. With the exception of nimesulide, FCVJ intensity changes were consistent with expected changes in membrane viscosity. A comparison of viscosity changes computed from FRAP and FCVJ led to a very good correlation between the two experimental methods. Since molecular rotors, including FCVJ, allow for extremely easy experimental methods, fast response time, and high spatial resolution, this study indicates that FCVJ may be used to quantitatively determine viscosity changes in phospholipid bilayers.  相似文献   

8.
Membrane viscosity is a key parameter in cell physiology, cell function, and cell signaling. The most common methods to measure changes in membrane viscosity are fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy. Recent interest in a group of viscosity sensitive fluorophores, termed molecular rotors, led to the development of the highly membrane-compatible (2-carboxy-2-cyanovinyl)-julolidine farnesyl ester (FCVJ). The purpose of this study is to examine the fluorescent behavior of FCVJ in model membranes exposed to various agents of known influence on membrane viscosity, such as alcohols, dimethyl sulfoxide (DMSO), cyclohexane, cholesterol, and nimesulide. The influence of key agents (propanol and cholesterol) was also examined using FRAP, and backcalculated viscosity change from FCVJ and FRAP was correlated. A decrease of FCVJ emission was found with alcohol treatment (with a strong dependency on the chain length and concentration), DMSO, and cyclohexane, whereas cholesterol and nimesulide led to increased FCVJ emission. With the exception of nimesulide, FCVJ intensity changes were consistent with expected changes in membrane viscosity. A comparison of viscosity changes computed from FRAP and FCVJ led to a very good correlation between the two experimental methods. Since molecular rotors, including FCVJ, allow for extremely easy experimental methods, fast response time, and high spatial resolution, this study indicates that FCVJ may be used to quantitatively determine viscosity changes in phospholipid bilayers.  相似文献   

9.
Molecular rotors, a group of fluorescent molecules with viscosity-dependent quantum yield, were tested for their suitability to act as fluorescence-based plasma viscometers. The viscosity of samples of human plasma was modified by the addition of pentastarch (molecular mass 260 kDa, 10% solution in saline) and measured with a Brookfield viscometer. Plasma viscosity was 1.6 mPa x s, and the mixtures ranged up to 4.5 mPa x s (21 degrees C). The stimulated light emission of the molecular rotors mixed in the plasma samples yielded light intensity that was nonoverlapping and of significantly different intensity for viscosity steps down to 0.3 mPa x s (n = 5, P < 0.0001). The mathematical relationship between intensity (I) and viscosity (eta) was found to be eta = (kappaI)(nu). After calibration and scaling the fluorescence based measurement had an average deviation versus the conventional viscometric measurements that was <1.8%. These results show the suitability of molecular rotors for fast, low-volume biofluid viscosity measurements achieving accuracy and precision comparable to mechanical viscometers.  相似文献   

10.

Luminescence spectroscopy coupled with molecular rotors was used in the TNO Intestinal Model-1 (TIM-1) to monitor in situ changes to luminal viscosity of three maize starch samples varying in the amylose-to-amylopectin ratio (AM: AP): normal, high amylose (AM) and high amylopectin (AP). The fluorescence intensity (FI) of Fast Green (FG), a proven micro (and bulk) viscosity probe, was monitored throughout digestion to track changes in the gastric viscosity. The FI of FG and the viscosity imparted by the starch followed a power-law relationship. The emission of the MR was unaffected by the composition of TIM-1 secretion fluids nor pH. Hence, direct measurements of digesta FI are sensitive to changing viscosity during the simulated digestion. The viscosity was highest for AP, followed by normal starch, and high AM had the lowest viscosity. In the TIM-1 gastric compartment, from highest to lowest FI, and thus viscosity was high AM > high AP > normal maize starches. We conclude the validity of the proposed method to facilitate the measurement of luminal viscosity, in vitro, when the microviscosity represents bulk viscosity (i.e., when the increase in bulk viscosity is a result of molecular crowding and the surrounding environment around the rotor is homogeneous). Careful consideration is required when foods are heterogeneous as molecular rotors report only on their local non-uniform environment.

  相似文献   

11.
Recent research shows high potential for some p-N,N-dialkylaminobenzylidenecyanoacetates, part of a group known as fluorescent molecular rotors, to serve as fluorescent, non-mechanical viscosity sensors. Of particular interest are molecules compatible with aqueous environments. In this study, we present the synthesis and physical characterization of derivatives from 9-(2-carboxy-2-cyanovinyl)-julolidine and related molecules. All compounds show a power-law relationship of fluorescence emission with the viscosity of the solvent, different mixtures of ethylene glycol and glycerol to modulate viscosity. Compounds with high water solubility exhibit the same behavior in aqueous solutions of dextran, where the dextran concentration was varied to modulate viscosity. In addition, some compounds have been found to have low sensitivity towards changes in the pH in the physiological range. The compounds presented show promise to be used in biofluids, such as blood plasma or lymphatic fluid, to rapidly and non-mechanically determine viscosity.  相似文献   

12.
Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level.1-3 While methods to measure the bulk viscosity are well developed, imaging microviscosity remains a challenge. Viscosity maps of microscopic objects, such as single cells, have until recently been hard to obtain. Mapping viscosity with fluorescence techniques is advantageous because, similar to other optical techniques, it is minimally invasive, non-destructive and can be applied to living cells and tissues.Fluorescent molecular rotors exhibit fluorescence lifetimes and quantum yields which are a function of the viscosity of their microenvironment.4,5 Intramolecular twisting or rotation leads to non-radiative decay from the excited state back to the ground state. A viscous environment slows this rotation or twisting, restricting access to this non-radiative decay pathway. This leads to an increase in the fluorescence quantum yield and the fluorescence lifetime. Fluorescence Lifetime Imaging (FLIM) of modified hydrophobic BODIPY dyes that act as fluorescent molecular rotors show that the fluorescence lifetime of these probes is a function of the microviscosity of their environment.6-8 A logarithmic plot of the fluorescence lifetime versus the solvent viscosity yields a straight line that obeys the Förster Hoffman equation.9 This plot also serves as a calibration graph to convert fluorescence lifetime into viscosity.Following incubation of living cells with the modified BODIPY fluorescent molecular rotor, a punctate dye distribution is observed in the fluorescence images. The viscosity value obtained in the puncta in live cells is around 100 times higher than that of water and of cellular cytoplasm.6,7 Time-resolved fluorescence anisotropy measurements yield rotational correlation times in agreement with these large microviscosity values. Mapping the fluorescence lifetime is independent of the fluorescence intensity, and thus allows the separation of probe concentration and viscosity effects. In summary, we have developed a practical and versatile approach to map the microviscosity in cells based on FLIM of fluorescent molecular rotors.  相似文献   

13.
Gravity-sensitive cellular responses are regularly observed in both specialized and nonspecialized cells. One potential mechanism for this sensitivity is a changing viscosity of the intracellular organelles. Here, we report a novel, to our knowledge, viscosity-sensitive molecular rotor based on mesosubstituted boron-dipyrrin used to investigate the response of viscosity of cellular membranes to hypergravity conditions created at the large diameter centrifuge at the European Space Agency Technology Centre. Mouse osteoblastic (MC3T3-E1) and endothelial (human umbilical vein endothelial cell) cell lines were tested, and an increase in viscosity was found with increasing hypergravity loading. This response is thought to be primarily biologically driven, with the potential for a small, instantaneous physical mechanism also contributing to the observed effect. This work provides the first, to our knowledge, quantitative data for cellular viscosity changes under hypergravity, up to 15 × g.  相似文献   

14.
Using the phase-modulation technique, we have measured the fluorescence decay of 2- and 12-(9-anthroyloxy)-stearic acid (2- and 12-AS) and 16-(9-anthroyloxy)-palmitic acid (16-AP) bound to egg phosphatidylcholine vesicles or dissolved in nonpolar solvents. Heterogeneity analysis demonstrates that the decay is generally not monoexponential and exhibits large component variations across it emission spectrum. The mean decay time increases (and in parallel, the steady-state polarization decreases) monotonically with increasing wavelength from values at the blue end. The decay at the red side of the emission spectrum contains an exponential term with a negative amplitude, indicating that emission occurs from intermediates created in the excited-state. This behavior is interpreted as arising from intramolecular fluorophore relaxation occurring on the time scale of the fluorescence lifetime. We believe this to be the first study of wavelength-dependent fluorescent emission which is dominated by an intramolecular relaxation process. Although the three probes exhibit qualitatively similar effects, the emission band variations are greatest for 2-AS and smallest for 16-AP. The differences among the probes are not entirely due to environmental factors as demonstrated, for example, by the emission polarization differences observed in the isotropic solvent paraffin oil. In summary, while these findings point out some of the complexities in the 9-anthroyloxy-fatty acids as membrane probes, they also indicate how these complexities might be used as a sensitive measure of lipid-probe interaction.  相似文献   

15.
As a fundamental physical parameter, viscosity influences the diffusion in biological processes. The changes in intracellular viscosity led to the occurrence of relevant diseases. Monitoring changes in cellular viscosity is important for distinguishing abnormal cells in cell biology and oncologic pathology. Here, we devised and synthesized a viscosity-sensitive fluorescent probe LBX-1 . LBX-1 showed high sensitivity, providing a large Stokes shift as well as an enhancement in fluorescent intensity (16.1-fold) from methanol solution to glycerol solution. Furthermore, the probe LBX-1 could localize in mitochondria because of the ability of the probe to penetrate the cell membrane and accumulate in mitochondria. These results suggested that the probe could be utilized in monitoring the changes in mitochondrial viscosity in complex biological systems.  相似文献   

16.
The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC(16) and DiIC(18). However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-beta-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) using fluorescent protein variants are used for studying the associations and biomolecular motions of macromolecules inside the cell. Intramolecular FRET utilizing fluorescent chemical labels has been applied in nucleic acid chemistry for detection of specific sequence. However, the biotechnological applications of intramolecular FRET in fluorescent proteins have not been exploited. This study demonstrates the intramolecular FRET between fluorescent protein and conjugated chemical label whereby FRET occurs from inside to outside and vice versa for fluorescent protein. The fluorescent protein is modified for the attachment of chemical fluorophores and the novel FRET pairs created by conjugation are MDCC (435/475)-Citrine (516/529) and Citrine-Alexa fluor (568/603). These protein-label pairs exhibited strong intramolecular FRET and the energy transfer efficiency was determined based on the time evolution of the ratio of emission intensities of labeled and unlabeled proteins. The efficiency was found to be 0.79 and 0.89 for MDCC-Citrine and 0.24 and 0.65 for Citrine-Alexa Fluor pairs when the label is conjugated at different sites in the protein. Fo?rster distance and the average distance between the fluorophores were also determined. The bidirectional approach described here can provide new insights into designing FRET-based sensors.  相似文献   

18.
The reaction between cytochrome f and plastocyanin is a central feature of the photosynthetic electron-transport system of all oxygenic organisms. We have studied the reaction in solution to understand how the very weak binding between the two proteins from Phormidium laminosum can nevertheless lead to fast rates of electron transfer. In a previous publication [Schlarb-Ridley, B. G., et al. (2003) Biochemistry 42, 4057-4063], we suggested that the reaction is diffusion-controlled because of a strong effect of viscosity of the medium. The effects of viscosity and temperature have now been examined in detail. High molecular mass viscogens (Ficoll 70 and Dextran 70), which might mimic in vivo conditions, had little effect up to a relative viscosity of 4. Low molecular mass viscogens (ethane diol, glycerol, and sucrose) strongly decreased the bimolecular rate constant (k(2)) over a similar viscosity range. The effects correlated well with the viscosities of the solutions of the three reagents but not with their dielectric constants or molalities. A power law dependence of k(2) on viscosity suggested that k(2) depends on two viscosity-sensitive reactions in series, while the reverse reactions are little affected by viscosity. The results were incompatible with diffusion control of the overall reaction. Determination of the effect of temperature on k(2) gave an activation enthalpy, DeltaH(++) = 45 kJ mol(-)(1), which is also incompatible with diffusion control. The results were interpreted in terms of a model in which the stable form of the protein-protein complex requires further thermal activation to be competent for electron transfer.  相似文献   

19.
During ventricular fibrillation (VF), electrical activation waves are fragmented, and the heart cannot contract in synchrony. It has been proposed that VF waves emanate from stable periodic sources (often called "mother rotors"). The objective of the present study was to determine if stable rotors are consistently present on the epicardial surface of hearts comparable in size to human hearts. Using new optical mapping technology, we imaged VF from nearly the entire ventricular surface of six isolated swine hearts. Using newly developed pattern analysis algorithms, we identified and tracked VF wave fronts and phase singularities (PS; the pivot point of a reentrant wave front). We introduce the notion of a compound rotor in which the rotor's central PS can change and describe an algorithm for automatically identifying such patterns. This prevents rotor lifetimes from being inappropriately abbreviated by wave front fragmentation and collision events near the PS. We found that stable epicardial rotors were not consistently present during VF: only 1 of 17 VF episodes contained a compound rotor that lasted for the entire mapped interval of 4 s. However, shorter-lived rotors were common; 12.2 (SD 3.3) compound rotors with lifetime >200 ms were visible on the epicardium at any given instant. We conclude that epicardial mother rotors do not drive VF in this experimental model; if mother rotors do exist, they are intramural or septal. This paucity of persistent rotors suggests that individual rotors will eventually terminate by themselves and therefore that the continual formation of new rotors is critical for VF maintenance.  相似文献   

20.
New fluorescent rotor molecules having hydrophilic functional groups, which are derivatives of p-(N,N-dialkylamino)benzylidenemalononitrile, were synthesized. Their properties as fluorescent rotors were confirmed by an observation of solvent viscosity-dependent fluorescence. Incorporation of hydrophilic groups into the molecules increased the solubility of fluorescent rotors in aqueous media; the application of the compounds to biochemical systems became feasible as a consequence. To demonstrate this applicability, we attempted to monitor the G-F transformation of rabbit skeletal muscle actin with these newly synthesized compounds. All the compounds carrying a malononitrile moiety showed greater fluorescence in F-actin. Among them, 1-(2-hydroxyethyl)-6-[(2,2-dicyano)vinyl]-2,3,4-trihydroquinoli ne gave the best result by the criteria of the difference in fluorescence quantum yield for G- and F-actin, solubility, and stability of the compound. The method has the major advantage of not requiring covalent modification of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号