首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

2.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

3.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

4.
海洋岛屿生物多样性保育研究进展   总被引:6,自引:0,他引:6  
海洋岛屿生态系统因具有明显的海域地理隔离而区别于陆地生态系统,被誉为生物地理与进化生态学研究的"天然实验室".陆地或其它邻近岛屿的种源物种迁移到新的岛屿后,经历地理隔离、特征置换或适应辐射等一系列的岛屿进化过程,形成与种源物种具有显著遗传差异的岛屿特有种.岛屿在小面积范围内分化形成大量的特有种,是岛屿生物多样性最为重要的特点之一.但是,岛屿种群由于分布范围局限、生境脆弱且种群规模较小,岛屿种群较陆地种群具有更高的灭绝风险.本文通过对海洋岛屿物种的起源与演化、遗传结构以及岛屿物种的濒危与保护3个热点问题的讨论,阐述岛屿生物多样性的形成机制、濒危肇因以及岛屿生物多样性保育的重要性.  相似文献   

5.
Aim We investigated the hypothesis that the insular body size of mammals results from selective forces whose influence varies with characteristics of the focal islands and the focal species, and with interactions among species (ecological displacement and release). Location Islands world‐wide. Methods We assembled data on the geographic characteristics (area, isolation, maximum elevation, latitude) and climate (annual averages and seasonality of temperature and precipitation) of islands, and on the ecological and morphological characteristics of focal species (number of mammalian competitors and predators, diet, body size of mainland reference populations) that were most relevant to our hypothesis (385 insular populations from 98 species of extant, non‐volant mammals across 248 islands). We used regression tree analyses to examine the hypothesized contextual importance of these factors in explaining variation in the insular body size of mammals. Results The results of regression tree analyses were consistent with predictions based on hypotheses of ecological release (more pronounced changes in body size on islands lacking mammalian competitors or predators), immigrant selection (more pronounced gigantism in small species inhabiting more isolated islands), thermoregulation and endurance during periods of climatic or environmental stress (more pronounced gigantism of small mammals on islands of higher latitudes or on those with colder and more seasonal climates), and resource subsidies (larger body size for mammals that utilize aquatic prey). The results, however, were not consistent with a prediction based on resource limitation and island area; that is, the insular body size of large mammals was not positively correlated with island area. Main conclusions These results support the hypothesis that the body size evolution of insular mammals is influenced by a combination of selective forces whose relative importance and nature of influence are contextual. While there may exist a theoretical optimal body size for mammals in general, the optimum for a particular insular population varies in a predictable manner with characteristics of the islands and the species, and with interactions among species. This study did, however, produce some unanticipated results that merit further study – patterns associated with Bergmann’s rule are amplified on islands, and the body size of small mammals appears to peak at intermediate and not maximum values of latitude and island isolation.  相似文献   

6.
Global change and human expansion have resulted in many species extinctions worldwide, but the geographic variation and determinants of extinction risk in particular guilds still remain little explored. Here, we quantified insular extinctions of frugivorous vertebrates (including birds, mammals and reptiles) across 74 tropical and subtropical oceanic islands within 20 archipelagos worldwide and investigated extinction in relation to island characteristics (island area, isolation, elevation and climate) and species’ functional traits (body mass, diet and ability to fly). Out of the 74 islands, 33 islands (45%) have records of frugivore extinctions, with one third (mean: 34%, range: 2–100%) of the pre‐extinction frugivore community being lost. Geographic areas with more than 50% loss of pre‐extinction species richness include islands in the Pacific (within Hawaii, Cook Islands and Tonga Islands) and the Indian Ocean (Mascarenes, Seychelles). The proportion of species richness lost from original pre‐extinction communities is highest on small and isolated islands, increases with island elevation, but is unrelated to temperature or precipitation. Large and flightless species had higher extinction probability than small or volant species. Across islands with extinction events, a pronounced downsizing of the frugivore community is observed, with a strong extinction‐driven reduction of mean body mass (mean: 37%, range: –18–100%) and maximum body mass (mean: 51%, range: 0–100%). The results document a substantial trophic downgrading of frugivore communities on oceanic islands worldwide, with a non‐random pattern in relation to geography, island characteristics and species’ functional traits. This implies severe consequences for ecosystem processes that depend on mutualistic plant–animal interactions, including ecosystem dynamics that result from the dispersal of large‐seeded plants by large‐bodied frugivores. We suggest that targeted conservation and rewilding efforts on islands are needed to halt the defaunation of large and non‐volant seed dispersers and to restore frugivore communities and key ecological interactions.  相似文献   

7.
The island biogeography of exotic bird species   总被引:1,自引:0,他引:1  
Aim   A recent upsurge of interest in the island biogeography of exotic species has followed from the argument that they may provide valuable information on the natural processes structuring island biotas. Here, we use data on the occurrence of exotic bird species across oceanic islands worldwide to demonstrate an alternative and previously untested hypothesis that these distributional patterns are a simple consequence of where humans have released such species, and hence of the number of species released.
Location   Islands around the world.
Methods   Statistical analysis of published information on the numbers of exotic bird species introduced to, and established on, islands around the world.
Results   Established exotic birds showed very similar species–area relationships to native species, but different species–isolation relationships. However, in both cases the relationship for established exotics simply mimicked that for the number of exotic bird species introduced. Exotic bird introductions scaled positively with human population size and island isolation, and islands that had seen more native species extinctions had had more exotic species released.
Main conclusion   The island biogeography of exotic birds is primarily a consequence of human, rather than natural, processes.  相似文献   

8.
To distinguish between the influences of area and isolation on the butterfly faunas of British islands two approaches are adopted. First, species richness is related to island area, isolation and the size of the faunal source. Neither area nor isolation account for much variance in species richness, though area is more important than isolation. In contrast, species richness corresponds closely to the size of the faunal source on nearby islands and to that at proximate locations on adjacent mainlands. The second approach relates the incidence of species on islands to their ecological attributes. A very close relationship is found between species incidence on islands and those ecological variables that measure potential for migration and colonization and that resist extinction. The implications are that the majority of British islands in this survey are insufficiently isolated to prevent intermittent migrations of butterflies to them or so small as to generate frequent extinctions. Independent data indicate the capacity of many resident species to migrate distances in excess of the isolation of most of the islands. Some evidence also exists for the long-term survival of species on islands; important considerations in this respect are that most islands in the survey are large compared to habitat patches sustaining species on mainland Britain and that substantial portions of islands are retained in early seral stages or comprise long-lived stable habitats (e.g. peat mosses) that are particularly suitable for many British species.  相似文献   

9.
Aim To assess how ant species richness and structure of ant communities are influenced by island age (disturbance history) in a dynamic archipelago. Location Cabra Corral dam, Salta Province, north‐west Argentina (25°08′ S, 65°20′ W). Methods Ant species richness on remaining fragments (islands) of a flooded forest was determined, as well as island area, isolation and age. Simple linear regressions were performed to assess relationships between ant species richness and those insular variables. Furthermore, a stepwise multiple linear regression analysis was conducted in order to determine the relative influence of each insular variable on ant species richness. Islands were categorized in two age classes (old and young) and co‐occurrence analyses were applied within each class to evaluate changes in community structure because of interspecific competition. Results Simple regression analyses indicated a moderate, positive effect of island area on ant species richness. Weak, marginally non‐significant relationships were found between ant species richness and both island isolation and island age, showing the tendency for there to be a decrease in ant species richness with island isolation and that ant species richness might be higher in old islands. The multiple regression analysis indicated that island isolation and age had no significant effects on the number of ant species, island area being the only independent variable retained in the analysis. On the contrary, whereas a random pattern of species co‐occurrence was found on young islands, ant communities in old islands showed a significantly negative pattern of species co‐occurrence, suggesting that the effect of competition on community structure was stronger on older islands than on younger islands. Main conclusions Island area was the most important variable explaining ant species richness on the islands of Cabra Corral dam. However, both island isolation and island age (or disturbance history) might also contribute to shape the observed community patterns. The present study also shows that island age significantly affects the strength with which interspecific interactions structure ant communities on islands.  相似文献   

10.
Cats are generalist predators that have been widely introduced to the world's ~179 000 islands. Once introduced to islands, cats prey on a variety of native species many of which lack evolved defenses against mammalian predators and can suffer severe population declines and even extinction. As islands house a disproportionate share of terrestrial biodiversity, the impacts of invasive cats on islands may have significant biodiversity impacts. Much of this threatened biodiversity can be protected by eradicating cats from islands. Information on the relative impacts of cats on different native species in different types of island ecosystems can increase the efficiency of this conservation tool. We reviewed feral cat impacts on native island vertebrates. Impacts of feral cats on vertebrates have been reported from at least 120 different islands on at least 175 vertebrates (25 reptiles, 123 birds, and 27 mammals), many of which are listed by the International Union for the Conservation of Nature. A meta‐analysis suggests that cat impacts were greatest on endemic species, particularly mammals and greater when non‐native prey species were also introduced. Feral cats on islands are responsible for at least 14% global bird, mammal, and reptile extinctions and are the principal threat to almost 8% of critically endangered birds, mammals, and reptiles.  相似文献   

11.
A general dynamic theory of oceanic island biogeography   总被引:3,自引:2,他引:1  
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.  相似文献   

12.
Comparative biogeography of mammals on islands   总被引:1,自引:0,他引:1  
Insular faunas of terrestrial mammals and bats are examined on a worldwide basis to test the adequacy of equilibrium and historical legacy models as explanations for species-area relationships. Species numbers of bats on islands conform to predictions from equilibrium theory, whereby recurrent immigrations and extinctions influence species richness. By contrast, species numbers of terrestrial mammals on islands result from a historical legacy of very low immigration rates on oceanic islands (the faunas are colonization-limited) and by the fragmentation of once contiguous continental faunas to form relictual populations, which subsequently undergo extinctions, on landbridge islands (the faunas are extinction-limited). This explanation is supported by several lines of evidence: (1) z values (slopes of species-area curves) are lower for non-volant mammals on oceanic islands than for those on landbridge islands, but are the opposite for bats; (2) z values for non-volant mammals are lower than those for bats on oceanic islands, but are higher than those for bats on landbridge islands; and (3) landbridge island faunas are attenuated mainland faunas, whereas those on oceanic islands are ecologically incomplete. No support is found for alternative hypotheses to explain low species-area slopes for terrestrial mammals on oceanic islands.  相似文献   

13.
Jason R. Ali  Shai Meiri 《Ecography》2019,42(5):989-999
Models for biodiversity growth on the remote oceanic islands assume that in situ cladogenesis is a major contributor. To test this, we compiled occurrence data for 194 terrestrial reptile species on 53 volcanically‐constructed middle‐ to low‐latitude landmasses worldwide. Despite 273 native island‐species records, there are only 8–12 cases of the phenomenon, including just two radiations. Diversification frequencies are largely uncorrelated with island area, age, maximum altitude, and isolation. Furthermore, there is no indication that the presence of non‐sister congeners on an island stymies the process. Diversity on individual oceanic islands therefore results primarily from immigration and anageneis, but this is not a simple matter. Clusters that are difficult to reach (far or challenging to get to) or thrive upon (e.g. Canaries, Galápagos) have relatively few clades (3–8), some of which have many species (6–14), and all host at least one endemic genus. In these settings, diversity grows mainly by intra‐archipelago transfer followed by within‐island anagenetic speciation. In contrast, those island groups that are easier to disperse to (characterized by short distances and conducive transit conditions) and harbour more benign habitats (e.g. Comoros, Lesser Antilles) have been settled by many ancestor‐colonizers (≥ 14), but each clade has few derived species (≤ 4). These archipelagoes lack especially distinctive lineages. Models explaining the assembly and growth of terrestrial biotic suites on the volcanic ocean islands thus need to accommodate these new insights.  相似文献   

14.
Aim Conservation of species is an ongoing concern. Location Worldwide. Methods We examined historical extinction rates for birds and mammals and contrasted island and continental extinctions. Australia was included as an island because of its isolation. Results Only six continental birds and three continental mammals were recorded in standard databases as going extinct since 1500 compared to 123 bird species and 58 mammal species on islands. Of the extinctions, 95% were on islands. On a per unit area basis, the extinction rate on islands was 177 times higher for mammals and 187 times higher for birds than on continents. The continental mammal extinction rate was between 0.89 and 7.4 times the background rate, whereas the island mammal extinction rate was between 82 and 702 times background. The continental bird extinction rate was between 0.69 and 5.9 times the background rate, whereas for islands it was between 98 and 844 times the background rate. Undocumented prehistoric extinctions, particularly on islands, amplify these trends. Island extinction rates are much higher than continental rates largely because of introductions of alien predators (including man) and diseases. Main conclusions Our analysis suggests that conservation strategies for birds and mammals on continents should not be based on island extinction rates and that on islands the key factor to enhance conservation is to alleviate pressures from uncontrolled hunting and predation.  相似文献   

15.
Aim The theory of island biogeography predicts species richness based on geographical factors that influence the extinction–colonization balance, such as area and isolation. However, human influence is the major cause of present biotic changes, and may therefore modify biogeographical patterns by increasing extinctions and colonizations. Our aim was to evaluate the effect of human activities on the species richness of reptiles on islands. Location Islands in the Mediterranean Sea and Macaronesia. Methods Using a large data set (n = 212 islands) compiled from the literature, we built spatial regression models to compare the effect of geographical (area, isolation, topography) and human (population, airports) factors on native and alien species. We also used piecewise regression to evaluate whether human activities cause deviation of the species–area relationship from the linear (on log–log axes) pattern, and path analysis to reveal the relationships among multiple potential predictors. Results The richness of both native and alien species was best explained by models combining geographical and human factors. The richness of native species was negatively related to human influence, while that of alien species was positively related, with the overall balance being negative. In models that did not take into account human factors, the relationship between island area and species richness was not linear. Large islands hosted fewer native species than expected from a linear (on log–log axes) species–area relationship, because they were more strongly affected by human influence than were small islands. Path analysis showed that island size has a direct positive effect on reptile richness. However, area also had a positive relationship with human impact, which in turn mediated a negative effect on richness. Main conclusion Anthropogenic factors can strongly modify the biogeographical pattern of islands, probably because they are major drivers of present‐day extinctions and colonizations and can displace island biodiversity from the equilibrium points expected by theory on the basis of geographical features.  相似文献   

16.
Aim R. J. Whittaker et al. recently proposed a ‘general dynamic model of oceanic island biogeography’ (GDM), providing a general explanation of island biodiversity patterns by relating fundamental biogeographical processes – speciation, immigration, extinction – to area (A) and time (T; maximum island geological age). We adapt their model, which predicts a positive relationship with area combined with a humped relationship to time (designated the ATT2 model), to study the factors promoting diversification on the Azores for several arthropod groups. Location The Azorean archipelago (North Atlantic; 37–40° N, 25–31° W). Methods We use the number of single‐island endemics (SIEs) as a measure of diversification, to evaluate four different predictions for the variation in SIEs between different islands, derived from the GDM theory and our knowledge of the fauna and history of the Azores. We calculated the number of SIEs for seven out of the nine Azorean islands and six groups of species (all arthropods, beetles, cavernicolous and non‐cavernicolous species, and taxa with high and low dispersal abilities). Several variables accounting for island characteristics (area, geological age, habitat diversity and isolation) and generalized linear models were used to evaluate the reliability of each prediction. Results A linear and positive relationship between SIEs and an AT (area + time) model was the most parsimonious explanation for overall arthropod diversification. However, cavernicolous species showed the opposite pattern (more SIEs inhabiting the youngest islands). Also, isolation was an important predictor of diversification for all groups except for the species with high dispersal ability; while the former were negatively related to the distance from the main source of colonizing lineages (Santa Maria island in most cases), the latter were related to area. Dispersal ability was also a key factor affecting the diversification of most groups of species. Main conclusions In general, the diversification of Azorean arthropods is affected by age, area and isolation. However, different groups are affected by these factors in different ways, showing radically different patterns. Although the ATT2 model fails to predict the diversification pattern of several groups, it provides a framework for integrating these deviations into a general theory. Further improvements of the GDM theory need to take into account the particular traits of each group and the role of isolation in shaping island diversity.  相似文献   

17.
Turnover of passerine birds on islands in the Aegean Sea (Greece)   总被引:1,自引:0,他引:1  
Aim We wish to determine the effect of migratory status on turnover rates in island birds. Because turnover is influenced by factors other than migratory status, we also considered the influence of body size and physical characteristics of the islands inhabited on the probabilities of extinction and immigration. Location The Mediterranean islands of Delos, Astypalea, Paros, Naxos and Lesvos in the Aegean Sea, Greece. Methods The passerine birds of these islands were surveyed between 1954 and 1961 by G.E. Watson, and were resurveyed between 1988 and 1992. The effects of migratory status and body size on the probabilities of extinction and immigration were examined by G‐tests of linear trend in proportion, and analysis of variance, respectively. A combined analysis of migratory status, body size and physical characteristics of the islands was carried out using logistic regressions of the probabilities of extinction and immigration on these factors. Results Species number on each island changed little between surveys, with no island's species number changing by more than one species. Twelve population extinctions and 11 immigrations were recorded. The smallest island, Delos (6 km2), had the highest annualized relative turnover rate (1.08), while the four larger islands (96–1614 km2) had lower and mutually similar rates (0.21–0.27). Populations on higher elevation islands were less likely to go extinct. There is no evidence for an effect of body size on the probabilities of extinction or immigration. Migratory status affected extinction and immigration probabilities differently: migratory species were more likely to immigrate, but less likely to go extinct. Main conclusions The position of the Aegean islands along a major north–south flyway may account for the observed effects of migratory status. The annual passage of large numbers of migrants may, via the rescue effect, decrease the chances of extinction, while at the same time increasing the chances of colonization of unoccupied islands. The likelihood of both extinction and immigration involves a complex interaction between life‐history traits and island characteristics. The effects of migratory status will depend not only on consideration of vagility, vulnerability and stochasticity identified by previous authors, but also upon the location of the islands in relationship to migratory pathways.  相似文献   

18.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

19.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

20.
Treeline research has strongly focused on mountain systems on the mainland. However, island treelines offer the opportunity to contribute to the global framework on treeline elevation due to their island‐specific attributes such as isolation, small area, low species richness and relative youth. We hypothesize that, similar to the mainland, latitude‐driven temperature variation is the most important determinant of island treeline elevation on a global scale. To test this hypothesis, we compared mainland with island treeline elevations. Then we focused 1) on the global effects of latitude, 2) on the regional effects of island type (continental vs oceanic islands) and 3) the local effects of several specific island characteristics (age, area, maximum island elevation, isolation and plant species richness). We collected a global dataset of islands (n = 86) by applying a stratified design using GoogleEarth and the Global Island Database. For each island we extracted data on latitude and local characteristics. Treeline elevation decreased from the mainland through continental to oceanic islands. Island treeline elevation followed a hump‐shaped latitudinal distribution, which is fundamentally different from the mainland double‐hump. Higher maximum island elevation generated higher treeline elevation and was found the best single predictor of island treeline elevation, even better than latitude. Lower island treeline elevation may be the result of a low mass elevation effect (MEE) influencing island climates and an increasingly impoverished species pool but also trade wind inversion‐associated aridity. The maximum island elevation effect possibly results from an increasing mass elevation effect (MEE) with increasing island elevation but also range shifts during climatic fluctuations and the summit syndrome (i.e. high wind speeds and poor soils in peak regions). Investigating islands in treeline research has enabled disentangling the global effect of latitude from regional and local effects and, at least for islands, a comprehensive quantification of the MEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号