首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The protozoan parasites Trypanosoma, Leishmania and Crithidia, which belong to the order kinetoplastidae, emerge from the most ancient eukaryotic lineages. The diversity found in the life cycle of these organisms must be directed by genetic events, wherein topoisomerases play an important role in cellular processes affecting the topology and organization of intracellular DNA. Topoisomerases are valuable as potential drug targets because they have indispensable function in cell biology. This review summarizes what is known about topoisomerase genes and proteins of kinetoplastid parasites and the roles of these enzymes as targets for therapeutic agents.  相似文献   

3.
4.
Evolutionary aspects of autotrophy.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

5.
Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.  相似文献   

6.
The study of biologically active peptides is a study of structural homology and functional diversity. Some fundamental peptide structures used as chemical messengers by simple organisms were evidently maintained throughout evolution with little change. In higher organisms these structures may still be used for functions related to the original use as well as for very different purposes. Examples are given of the multifunctional roles of common peptides and of the mechanisms by means of which these functions are separated and regulated. The active core of ACTH appears to be used as a signal in regulation of reproduction throughout the range of eukaryotes and also appears in a baffling range of other important proteins. The ubiquitous nature of this peptide sequence suggests that it plays a universal role in recognition or activation of specific receptors. Peptides used in lower species as hormones or chemical defense substances play an important role in research as presagers of the discovery of corresponding mammalian peptides.  相似文献   

7.
Based on the primary structure, soluble inorganic pyrophosphatases can be divided into two families which exhibit no sequence similarity to each other. Family I, comprising most of the known pyrophosphatase sequences, can be further divided into prokaryotic, plant and animal/fungal pyrophosphatases. Interestingly, plant pyrophosphatases bear a closer similarity to prokaryotic than to animal/fungal pyrophosphatases. Only 17 residues are conserved in all 37 pyrophosphatases of family I and remarkably, 15 of these residues are located at the active site. Subunit interface residues are conserved in animal/fungal but not in prokaryotic pyrophosphatases.  相似文献   

8.
9.
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.  相似文献   

10.
11.
RNA editing in kinetoplastid protozoa.   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
16.
RNA editing in kinetoplastid protozoa.   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

17.
18.
Friedberg F  Rhoads AR 《IUBMB life》2001,51(4):215-221
Calmodulin (CaM) is a major cellular sensor of calcium signaling, interacts with numerous proteins associated with cellular second messenger systems (e.g., cyclic AMP, nitric oxide), and is associated with neurosecretory activity. An identical CaM protein consisting of four helix-loop-helix regions that arose by gene duplication is encoded by three nonallelic mammalian genes that are some of the most highly conserved genes known. Differential tissue and cellular expression of each CaM suggest unique functions that promote strong selective preservation of these replicate, yet distinct, CaM genes in mammals. Each gene displays the same exon-intron arrangement but is characterized by distinct promoter elements and by unique 5'- and 3'-untranslated regions that are highly conserved among human, rat, and mouse. These distinct untranslated regions may permit regulation of CaM levels at discrete cellular sites during differentiation and in highly specialized cell types such as neurons.  相似文献   

19.
Protein trafficking in kinetoplastid protozoa.   总被引:7,自引:1,他引:6       下载免费PDF全文
The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected.  相似文献   

20.
Co-translational modification of eukaryotic proteins by N-myristoylation aids subcellular targeting and protein-protein interactions. The enzyme that catalyzes this process, N-myristoyltransferase (NMT), has been characterized in the kinetoplastid protozoan parasites, Leishmania and Trypanosoma brucei. In Leishmania major, the single copy NMT gene is constitutively expressed in all parasite stages as a 48.5-kDa protein that localizes to both membrane and cytoplasmic fractions. Leishmania NMT myristoylates the target acylated Leishmania protein, HASPA, when both are co-expressed in Escherichia coli. Gene targeting experiments have shown that NMT activity is essential for viability in Leishmania. In addition, overexpression of NMT causes gross changes in parasite morphology, including the subcellular accumulation of lipids, leading to cell death. This phenotype is more extreme than that observed in Saccharomyces cerevisiae, in which overexpression of NMT activity has no obvious effects on growth kinetics or cell morphology. RNA interference assays in T. brucei have confirmed that NMT is also an essential protein in both life cycle stages of this second kinetoplastid species, suggesting that this enzyme may be an appropriate target for the development of anti-parasitic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号