首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

2.
Roth Z  Inbar G  Arav A 《Theriogenology》2008,69(8):932-939
Reduced reproductive performance and lower conception rates of lactating cows are closely associated with genetic progress for high milk production. In contrast, the fertility of nulliparous Holstein heifers has remained fairly stable over the years and appears to be markedly higher than that of mature lactating cows. Possible differences in oocyte quality and follicular steroid levels, which could be associated with the low fertility of high-lactating cows, were examined in 13-month-old heifers, cows around the time of first AI (60-95 d post-partum, yielding 49+/-2.4 kg/d) and cows at mid-lactation (120-225 d post-partum, yielding 37+/-2.1 kg/d). Estrus was synchronized by two doses of PGF2alpha and follicles (5-8 mm) were aspirated on days 4, 8, 11 and 15 of the cycle by an ultrasound-guided procedure. Oocytes were morphologically examined, matured in vitro, chemically activated and cultured for 8d. Cleavage rate and the proportion of developing parthenogenetic blastocysts were determined on days 3 and 8 post-activation, respectively. On day 17, heifers and cows received additional PGF2alpha and follicular fluids from preovulatory follicles were collected on day 19 perior to the expected estrus. Follicular-fluid volumes were similar in cows and heifers, as were estradiol, progesterone and androstenedione concentrations in the follicular fluid. Percentages of high-grade oocytes, proportions of cleaved oocytes and developed blastocysts did not differ between the groups. Results suggest that the fertility gap between nulliparous heifers and high-lactating cows is not directly related to steroid content in the preovulatory follicular fluid or oocyte developmental competence.  相似文献   

3.
The widespread use of ultrasonography and IVF over the past decade has provided new tools to evaluate how follicles and oocytes react to different superstimulatory treatments. This information may be used to redefine actual hormonal stimulations to improve results of MOET programs and/or obtain improved responses from the "so-called" poor responders. This retrospective study examined data collected over a 5-year period involving oocyte collections in a commercial embryo transfer unit to determine the stimulation protocol that was most effective in producing competent cumulus oocyte complexes, and to determine a definition of a low responder. Overall, the population of small antral follicles at the time of follicle ablation was the most important factor affecting results. This pool of small antral follicles was significantly correlated with the number of follicles at oocyte collection, and to the number of viable and transferable embryos produced. Varying the superstimulatory treatments in terms of type of FSH in association with a shorter or longer coasting period did not affect ovarian response or embryonic development rates. Low responders (less than 10% of the animals in this study) were defined as animals with a lower than average follicular response following superstimulation. Low potential animals were defined as donors producing a limited number of embryos because of the limited population of small antral follicles present in the ovaries at initiation of FSH treatment. Embryo transfer practitioners must distinguish between low responders and low potential animals as modifications to the stimulation protocol for the latter group is unlikely to result in a higher number of transferable embryos.  相似文献   

4.
A highly variable yield of viable embryos in superovulated cattle is a major hindrance to the embryo transfer industry. To trace the cause of this problem, investigations were carried out on the intrafollicular steroids and structure of oocytes originating from follicles of follicular stimulating hormone (FSH)-stimulated (superovulated) and unstimulated heifers. Unstimulated heifers were slaughtered at midcycle, or administered cloprostenol (PG) at midcycle and slaughtered after 24, 48, or 72 hr, while superovulated heifers were administered 4 injections of pFSH (2 injections per day) and slaughtered 12 hr later, or administered 6, 7, or 8 injections of FSH in combination with PG at the 5th and 6th injection, and slaughtered 24, 36, or 60 hr, respectively, after the first PG injection. The follicular fluid from the largest (presumptive dominant) follicle of the unstimulated heifers and from potentially ovulatory follicles (≥8 mm in diameter) of the superovulated heifers were assayed for estradiol-17β (E2) and progesterone (P4), while the oocyte cumulus complexes from such follicles were processed for transmission electron microscopy. The mean E2 and especially P4 concentrations of the potentially ovulatory follicles of the superovulated heifers were lower than similar follicles of the unstimulated animals (83.7 ± 76.7 ng/ml vs. 208.1 ± 357.0 ng/ml, P > 0.05 and 31.1 ± 38.7 ng/ml vs. 150.3 ± 202, P < 0.05, respectively). The unstimulated oocytes had, in general, spherical oocyte nuclei and compact nucleoli before PG administration, while after PG, undulation of the nuclear envelope and nucleolus vacuolization was characteristic. The superovulated oocytes, in comparison, displayed the following deviations: premature perivitelline space formation, lack of nucleolar vacuolization, reduced amount of lipid droplets and lack of lipid-mitochondria association, enlarged rough endoplasmic reticulum compartment, and increased condensation of chromatin and elongation, i.e., expansion of some cumulus cells. Degenerative oocytes were only found in the superovulated group. It is concluded that FSH-stimulation is associated with reduced intrafollicular E2 and P4 concentrations and subcellular deviations in the oocytes that are established early in the superovulatory process. These deviations may contribute to the reduced developmental competence of superovulated oocytes. © 1994 Wiley-Liss, Inc.  相似文献   

5.
This study aimed to investigate the developmental competence of ovum pick-up collected oocytes on three stages of the follicular wave: Days 2, 5 and 8. A group of 11 cows was used in successive cycles to perform ovum pick-up on either Day 2, 5 or 8 of an induced follicular wave (three sessions per stage). Follicular waves were initiated by puncturing the dominant follicle and all other follicles sized > or = 5 mm at Days 5-7 of the cycle. The plasma progesterone concentrations did not differ between the days of ovum pick-up: 4.0 +/- 1.8, 5.1 +/- 1.6 and 5.2 +/- 1.7 ng/ml for Days 2, 5 and 8, respectively. The proportion of oocytes with three or more layers of non-expanded cumulus cells was higher for Day 5 than Day 8, while Days 2 and 5 did not significantly differ from each other (85, 96 and 68% of 113, 60 and 101 oocytes for Days 2, 5 and 8, respectively). The proportion of oocytes competent to develop a blastocyst in an in vitro production system was higher for Days 2 and 5 than for Day 8: 27, 29 and 15% for the oocytes with fair to good cumulus investment and 23, 27 and 11%, respectively, when all oocytes were taken in account. This indicates that the dominant follicle reduces the developmental competence of oocytes from subordinate follicles at a relatively late stage of dominance. This finding has practical consequences for the handling of cows that undergo ovum pick-up only once or very irregularly. The embryo yield can then be improved by performing the ovum pick-up at Days 2-5 of the cycle or 2-5 days after ablation of the large follicles.  相似文献   

6.
There is increasing evidence demonstrating that oocyte quality depends on the events that occur before germinal vesicle breakdown (GVBD), suggesting that the oocyte must accumulate the appropriate information for meiotic resumption fertilization and early embryonic development before chromosome condensation. This situation seems to prevail in large mammals and particularly in the bovine where we have more information than in other species. Signaling events at two different levels controls the changes that must take place for follicular growth and attainment of oocyte developmental competence. The first signaling event comes from the proper differentiation of the follicle as it normally occurs in the dominant follicle in preparation for ovulation. The second signaling event occurs as the process of follicle differentiation signals directly to the oocyte, possibly through the cumulus cells, that conditions are suitable for further embryo development. The first signal, follicular differentiation, becomes possible though a rise and fall of FSH in the circulation, while the second signal might be mimicked partially by the same hormone acting on the cumulus cells. Although FSH is likely involved in these two signaling events, the processes involved are quite different and analysis of gene expression in granulosa, cumulus and oocyte is starting to reveal the complexity of this system. The next challenge is to combine these two pathways into a functional signaling cascade. To be successful and obtain meaningful information, these genomic analyses must be developed and performed in precisely defined conditions of follicular growth and differentiation or culture conditions. Functional genomics already started with the study of function of several genes and genes families in the regulation of follicular growth and follicle-oocyte co-differentiation (i.e. IGF and BMP genes families, EGF).  相似文献   

7.
In the last few years, several works suggest that Growth Hormone (GH) is involved in follicular development and oocyte maturation. These actions may reflect endocrine roles of pituitary GH and also account for local autocrine or paracrine activities of GH produced in reproductive tissue. This study was aimed to verify whether the developmental competence of bovine female gametes might be related to ovarian GH. We evaluated the localisation and distribution of GH in the cumulus oocytes complexes (COCs) and the concentration of GH in the oocytes and in the follicular fluids (FF) from ovaries classified on the basis of the follicles number. Oocytes retrieved from ovaries with more than 10 follicles of 2 to 5 mm in diameter (High ovaries, Hi) show higher rate of maturation and blastocyst formation than those retrieved from ovaries with less than 10 follicles (Low ovaries, Lo). At the same time we measured Estrogen (E2) and Progesterone (P4) concentrations in FF, to relate oocytes quality, GH concentration and follicle health. GH localization in COCs and oocytes was performed by indirect immunofluorescence and its concentration within the ooplasm was evaluated by microspectrophotometer analysis. GH, E2 and P4 concentrations in FF were measured by an Enzyme Linked ImmunoSorbent assay (ELISA). We observed a positive, diffuse signal at cytoplasmic level in most of the cumulus cells, with no differences between COCs collected from Hi and Lo ovaries. On the contrary, GH level was significantly higher in the oocytes collected from Lo ovaries than in those recovered from Hi ovaries. Finally we found that also GH level in the FF was inversely related to the oocytes developmental capability. We suggest that the increase of GH in the oocytes and in the FF derived from Lo ovaries might be interpreted as attempt of the follicular environment to improve ovarian activity and in turn oocytes developmental competence in a autocrine-paracrine manner. Moreover, E2, and P4 levels in FF suggest that, in our model, atresia processes are also involved in oocyte developmental capability and that the highest level of GH may represent a local reaction to these phenomena.  相似文献   

8.
9.
The objective was to determine whether exposure of Gir (Bos indicus) cows to heat-stress (HS) causes immediate and delayed deleterious effect on follicular dynamics, hormonal profile and oocyte competence. The cows were kept in tie-stalls for an adaptive thermoneutral period of 28 days (Phase I, Days -28 to -1). In Phase II (Days 0-28) cows were randomly allocated into control (CG, n=5) and HS (HS, n=5) treatments. The HS cows were placed in an environmental chamber at 38 degrees C and 80% relative humidity (RH) during the day and 30 degrees C, 80% RH during the night for 28 days. The CG group was maintained in shaded tie-stalls (ambient temperature) for 28 days. During Phase III (Days 28-147) animals were placed in tie-stalls (Days 28-42) followed by pasture (Days 42-147) under thermoneutrality. In each phase, weekly ovum pick up (OPU) sessions were to evaluate follicular development, morphology of cumulus-oocyte complexes (COCs), and developmental competence after in vitro maturation, fertilization, and culture. Serum concentrations of progesterone (P(4)) and cortisol were evaluated by radioimmunoassay. Exposure of Gir cows to HS had no immediate effect on reproductive function, but exerted a delayed deleterious effect on ovarian follicular growth, hormone concentrations, and oocyte competence. Heat-stress increased the diameter of the first and second largest follicles from Days 28 to 49. Indeed, HS increased the number of >9 mm follicles (characterized as follicular codominance) during this phase. Cows exposed to HS had longer periods of non-cyclic activity (P(4)<1 ng/mL), as well as shorter estrous cycles. However, HS did not affect cortisol concentration as compared to CG. Although HS had no significant effect on cleavage rate, it reduced blastocyst development during Phase III. In conclusion, long-term exposure of B. indicus cattle to HS had a delayed deleterious effect on ovarian follicular dynamics and oocyte competence.  相似文献   

10.
In several species, the developmental competence of the oocyte is acquired progressively during late follicular growth, after the acquisition of the competence to resume and complete meiosis. In the pig, full meiotic competence of the oocyte is reached in ovarian follicles with a diameter of 3 mm or more. However, there is no information about developmental competence acquisition. We analyzed the ability of oocytes from three foll icular size classes to resume and complete meiosis, to be fertilized, and to develop in vitro to the blastocyst stage. A total of 941 follicles were dissected from slaughterhouse gilt ovaries and classified as small (<3 mm, n = 330), medium (3-5 mm, n = 373), or large (>5 mm, n = 238). The cumulus-oocyte complexes recovered from these follicles were submitted to in vitro maturation for 44 h in TCM199 supplemented with 10 ng/ml EGF, 400 ng/ml pFSH and 570 microM cysteamine; in vitro fertilized for 18 h in mTBM with 10(5) frozen-thawed percoll-selected sperms/ml; and developed for 7 days in mSOF. Samples of oocytes or presumptive zygotes were fixed and stained at the end of maturation and fertilization. Groups of oocytes were cultured for 3 h in the presence of 35S-methionine before or after maturation for SDS-PAGE analysis of protein neosynthesis. More oocytes originating from medium and large follicles were competent for maturation than oocytes from small follicles (77 and 86% of metaphase II, respectively, versus 44%, P < 0.05). More oocytes from medium and large follicles werepenetratedby spermatozoa during in vitro fertilization, resulting in significantly more oocytes presenting two or more pronuclei at the end of fertilization (73 and 77% for medium and large follicles, respectively, versus 53% for small follicles, P < 0.05). More oocytes from medium and large follicles developed to the blastocyst stage (14 and 23%, respectively) than those from small follicles (3%, P < 0.05), even if the development rates were corrected by the maturation or fertilization rates. It is concluded that a high proportion of oocytes harvested from follicles of less than 3 mm in the pig are not fully competent for meiosis and are cytoplasmically deficient for development.  相似文献   

11.
Alkylphenolic compounds are a widespread family of xenoestrogens. High concentrations of these substances are present in sewage sludge that is spread on arable land and pasture as fertilizer. Because of their known endocrine system-disrupting activity, alkylphenols represent a potential risk for the reproductive health of farm animals. In this study, the impact of p-tert-octylphenol (OP) on the developmental competence of bovine oocytes was evaluated. Endocrine activity of OP was investigated for its effect on estrogen receptors alpha and beta (ERalpha and ERbeta) and progesterone receptor (PR) mRNA levels. Cumulus-oocyte complexes (COCs) were exposed during in vitro maturation to serial concentrations of OP (1-0.0001 microg/ml) and were compared with vehicle-treated controls and a group of COCs treated with 17 beta-estradiol (E2). A dose-related decrease in the percentage of oocytes that completed maturation after 24 h and in oocyte fertilization competence was observed at doses of OP as low as 0.01 microg/ml. Groups treated with > or =0.001 microg/ml OP showed impaired embryo development. No adverse effects of E2 were observed. In the E2-treated COCs, ERalpha mRNA was decreased but PR mRNA was upregulated compared with controls. Treatment with 0.001 and 0.0001 microg/ml OP induced a decrease in ERalpha mRNA, but ERbeta and PR mRNA were not affected. Treatment with 0.01 microg/ml OP did not produce changes in the expression of any of the mRNAs studied. OP impairs meiotic progression and developmental competence of bovine oocytes without demonstrating clear estrogen-mimic activity.  相似文献   

12.
Objectives of the experiment were to determine the effects of mare age and gonadotropin treatments on dominant follicle vascularity, ovarian blood flow and dominant follicle growth and to associate follicular vascularity with oocyte developmental capacity. Growing follicles >30mm from young (4-9 years) and old (>20 years) mares were assessed for blood flow using color Doppler ultrasonography before maturation induction with recombinant equine LH (eLH) and immediately prior to oocyte collection at 20-24h after eLH. Pulsed Doppler was used to obtain resistance indices of ovarian arteries ipsilateral to preovulatory follicles. For eFSH-treated estrous cycles, eFSH administration was started after detection of a cohort of follicles ≥20 to <25mm and continued until a follicle >30mm. Oocytes were harvested using transvaginal, ultrasonic-guided aspirations and cultured and injected with sperm at 40±1h after eLH. Presumptive zygotes were incubated, and rates of cleavage (≥2 cells) and blastocyst formation were obtained. Embryos were transferred nonsurgically into recipients' uteri, and pregnancy rates were assessed. Vascularity (number of color pixels per total pixels) was higher (P=0.003) in the follicles of old compared to young mares, with no significant interaction of eFSH or eLH. Effects of eFSH and time from eLH on follicle vascularity were not significant. The vascularity of follicles associated with oocytes that did compared to those that did not form blastocysts was greater (P=0.048), although follicular vascularity was less (P=0.02) for follicles associated with oocytes that did compared to those that did not develop into pregnancies. Resistance indices were not different for age, eFSH treatment, time after eLH administration and oocyte developmental potential. Growth of the dominant follicle was not associated with vascularity, although advanced age tended (P=0.09) to have a negative effect on follicle growth.  相似文献   

13.
This study examined the relationship between survivin expression and the stage of development of in vitro cultured bovine oocytes and embryos; and whether survivin expression is affected by the quality of cumulus–oocyte complexes (COCS) or the quality of pre-implantation embryos. A polyclonal antibody was prepared using recombinant bovine survivin protein. Expression of survivin mRNA and protein was analyzed by real-time quantitative RT-PCR and immunocytochemistry. In the first experiment, survivin mRNA expression was examined at developmental stages from germinal vesicle (GV) oocyte to blastocyst, it was significantly decreased after fertilization of matured oocytes (P < 0.05), then increased slightly to the 8-cell stage followed by rapid increases at the morula and blastocyst stages (P < 0.05). In the second experiment, the effect of oocyte quality on survivin protein, pro-apoptotic (bax, caspase-3) and anti-apoptotic (survivin, bax inhibitor) mRNA expression was examined. Survivin protein was more strongly expressed in good quality COCS than in poor quality COCS. The expression of the anti-apoptotic genes, survivin and bax inhibitor, was significantly higher (P < 0.05) and that of the pro-apoptotic genes, bax and caspase-3, was significantly lower (P < 0.05) in good compared to poor quality COCS. The developmental competence of good quality COCS (30.4% blastocysts) was significantly better than that of poor quality COCS. In the last experiment also, we confirmed that significantly higher expression of survivin and bax inhibitor genes and significantly lower expression of bax and caspase-3 genes was resulted in good quality blastocysts than in poor quality blastocysts (P < 0.05). It was concluded that the expression of survivin was related to the quality of COCS, their developmental competence and the quality of in vitro produced blastocysts. Consequently, survivin may be a good candidate marker for embryo quality.  相似文献   

14.
The aim of the present study was to characterize in detail the cytoplasmic and nuclear morphology of cattle oocytes recovered from follicles that are dominant for more than 9 days (with low fertility after ovulation), and to relate morphological changes to intrafollicular markers of follicle health. Beef heifers received prostaglandin F2 alpha and a synthetic progestagen (3 mg Norgestomet) for 2 or 10 days on the first day of dominance of the second dominant follicle (DF2) of the oestrous cycle, to give a 4 day (n = 19; N2) or 12 day (n = 21; N10) duration of dominance of the dominant follicle at ovariectomy 18 h after implant removal and before the predicted gonadotrophin surge. Ultrasound scanning determined emergence of a new wave of follicles in five N10 heifers the day before (n = 1) or day of ovariectomy (n = 4) (N10-NonDom). Dominant follicles from the remaining N10 heifers (N10-Dom) were larger (P < 0.05) on the day of ovariectomy (17.8 +/- 0.6 mm) than those from N2 heifers (13.6 +/- 0.4 mm). The oestradiol:progesterone ratio of follicular fluid from N10-Dom heifers was reduced (21.7 +/- 3.1 versus 34.1 +/- 4.4; P < 0.05), while inhibin A (as measured by immunoradiometric assay) was increased (12.7 +/- 1.0 versus 9.0 +/- 0.7 micrograms ml-1; P < 0.05) compared with N2 heifers. Eleven of twelve N2 oocytes demonstrated nuclear activation without germinal vesicle breakdown, while seven of eight N10-Dom oocytes had undergone germinal vesicle breakdown and had progressed to metaphase I (6/8) or II (1/8). In contrast to N2 oocytes, N10-Dom oocytes showed a larger perivitelline space containing more cumulus cell process endings, vacuoles, irregular vesicles, and more mitochrondia and lipid droplets throughout the ooplasm, yet the degree of cumulus cell expansion and atresia was similar. Thus, final oocyte maturation leading to metaphase I is initiated in most dominant follicles with a dominance period of > 9 days before the gonadotrophin surge and is associated with a reduction in dominant follicle health. However, ovulatory ability is maintained and will lead to the ovulation of aged oocytes, markedly reducing subsequent pregnancy rates.  相似文献   

15.
A GnRH antagonist (Antarelix) treatment was used during the breeding season of Romanov ewes, to investigate whether LH pulses are required the day before the preovulatory surge for normal early embryo development in vivo (Expt 1) and in vitro (Expt 2). In Expt 1, at the onset of oestrus after removal of a fluorogestone acetate sponge, group A0.5 (n = 22) received a subcutaneous injection of 0.5 mg Antarelix, and ovulation was induced with an intravenous injection of 3 mg pig LH 24 h later. The control group (group C, n = 20) were untreated. All ewes were mated naturally at 36 and 48 h after oestrus and embryos were recovered 8 days after sponge removal. There were significant differences in the decrease in LH and in the increase in FSH concentration after Antarelix treatment between treated and control groups. The ovulation rate and embryo recovery rate were not significantly different between the two groups but the blastocyst rate was lower (P < 0.0001) in group A0.5 than in group C, with more unfertilized or degenerated oocytes in group A0.5 (69.2%). In Expt 2, 24 h after sponge removal, group A (n = 10) and group B (n = 10) received one subcutaneous injection of 0.5 mg Antarelix. The control group (group C, n = 10) was left untreated. LH pulsatility was re-established in group B with hourly intravenous injections of 5 micrograms ovine LH for 24 h. Oocytes were collected by flushing the oviducts 28 h after the LH surge, and were fertilized and cultured in vitro for 7 days. Ovulation and cleavage rates were not significantly different among the three groups but a higher rate of blastocysts (P < 0.01) was obtained after Antarelix treatment when LH pulsatility was re-established (group B). Oestradiol concentration was strongly depressed (P < 0.0003) after Antarelix treatment in group A, but was maintained after injection of LH pulses in group B, although at a lower value than before the preovulatory surge in the control group. In conclusion, inhibition of endogenous LH pulses 1 day before the preovulatory surge was not essential for ovulation and in vitro fertilization but was associated with a decrease in plasma oestradiol concentrations and inferior embryo development both in vivo and in vitro. When LH pulsatility was re-established, oestradiol concentrations increased and embryo development was restored.  相似文献   

16.
Effects of maternal age on oocyte developmental competence   总被引:5,自引:0,他引:5  
Armstrong DT 《Theriogenology》2001,55(6):1303-1322
The widespread use of a variety of assisted reproductive technologies has removed many of the constraints that previously restricted mammalian reproduction to the period between onset of puberty and reproductive senescence. In vitro embryo production systems now allow oocytes from very young animals to undergo fertilization and form embryos capable of development to normal offspring, albeit at somewhat reduced efficiencies compared to oocytes from adult females. They also can overcome infertility associated with advanced age of animals and women. This review examines oocyte developmental competence as the limiting factor in applications of assisted reproductive technologies for both juvenile and aged females. Age of oocyte donor is a significant factor influencing developmental competence of the oocyte. Age-related abnormalities of oocytes include a) meiotic incompetence or inability to complete meiotic maturation resulting in oocytes incapable of fertilization; b) errors in meiosis that can be compatible with fertilization but lead to genetic abnormalities that compromise embryo viability; and c) cytoplasmic deficiencies that are expressed at several stages of development before or after fertilization. In general, oocytes from juvenile donors and the embryos derived therefrom appear less robust and may be less tolerant to suboptimal handling and in vitro culture conditions than are adult oocytes. Research to identify specific cytoplasmic deficiencies of juvenile oocytes may enable modifications of culture conditions to correct such deficiencies and thus enhance developmental competence. Use of oocytes from aged donors for assisted reproduction can have a variety of applications such as extending the reproductive life of individual old females whose offspring still have high commercial value, and conservation of genetic resources such as rare breeds of livestock and endangered species. In general, female fertility decreases with advancing age. Studies of women in oocyte donation programs have established reduced oocyte competence as the major cause of declining fertility with age, although inadequate endometrial function can also be a contributing factor. Most research has emphasized the importance of chromosomal abnormalities because of the well established increase in aneuploidy with increasing maternal age but little is known about the underlying cellular and molecular mechanisms. Research aimed at identifying the specific developmental deficiencies of oocytes from juvenile donors and abnormalities of oocytes from aged females will assist in overcoming present bottlenecks that limit the efficiency of assisted reproduction technologies. Such research will also be crucial to the development of new oocyte-based technologies for overcoming infertility and possibly subverting chromosomal abnormalities in women approaching menopause.  相似文献   

17.
Aiming to achieve the ideal time of ovum pick-up (OPU) for in vitro embryo production (IVP) in crossbred heifers, two Latin square design studies investigated the effect of ovarian follicular wave synchronization with estradiol benzoate (EB) and progestins. For each experiment, crossbred heifers stage of estrous cycle was synchronized either with a norgestomet ear implant (Experiment 1) or a progesterone intravaginal device (Experiment 2) for 7 d, followed by the administration of 150 μg d-cloprostenol. On Day 7, all follicles >3 mm in diameter were aspirated and implants/devices were replaced by new ones. Afterwards, implant/device replacement was conducted every 14 d. Each experiment had three treatment groups. In Experiment 1 (n = 12), heifers in Group 2X had their follicles aspirated twice a week and those in Groups 1X and 1X-EB were submitted to OPU once a week for a period of 28 d. Heifers from Group 1X-EB also received 2 mg EB i.m. immediately after each OPU session. In Experiment 2 (n = 11), animals from Group 0EB did not receive EB while heifers in Groups 2EB and 5EB received 2 and 5 mg of EB respectively, immediately after OPU. The OPU sessions were performed once weekly for 28 d. Therefore, in both experiments, four OPU sessions were performed in heifers aspirated once a week and in Experiment 1, eight OPU sessions were done in heifers aspirated twice a week. Additionally, during the 7-d period following follicular aspiration, ovarian ultrasonography examinations were conducted to measure diameter of the largest follicle and blood samples were collected for FSH quantification by RIA. In Experiment 1, all viable oocytes recovered were in vitro matured and fertilized. Results indicated that while progestin and EB altered follicular wave patterns, this treatment did not prevent establishment of follicular dominance on the ovaries of heifers during OPU at 7-d intervals. Furthermore, the proposed stage of follicular wave synchronization strategies did not improve the number and quality of the recovered oocytes, or the number of in vitro produced embryos.  相似文献   

18.
Oocytes from aging ovaries contain mitochondria with morphological and genetic flaws. How these flaws relate to phenotypes of oocyte developmental compromise associated with clinical infertility is not well understood. This study was conducted to investigate the role of mitochondria in the developmental compromises observed with female aging using a mouse model of mitochondrial dysfunction. Oocytes obtained from aging (30-40 wk) (C57BL/6J x CBACaH)F1 (B6CBAF1) hybrid female mice were photosensitized with mitochondrial fluorophore rhodamine-123 for variable durations and compared to similarly treated oocytes derived from pubertal mice (4-6 wk). Blastocyst development of normally fertilized oocytes from both age-groups correlated negatively in mathematically unique profiles with irradiation time, with a more sudden decline in development for oocytes from aging mice. Complete inhibition of blastocyst development occurred following a shorter duration of photosensitization for oocytes from aging compared to pubertal animals (60 vs. 90 sec). Prolonged photosensitization resulted in mitochondrial uncoupling and promoted localized generation of reactive oxygen species, mitochondrial permeabilization, and apoptotic phenotypes. Thus, aging oocytes are more developmentally sensitive to mitochondrial damage than pubertal oocytes but undergo similar metabolic and apoptotic responses. These and future findings may encourage further optimization of laboratory-based strategies to minimize mitochondrial injury to oocytes, particularly those from older women, and improve clinical outcomes for women with age-related etiologies of infertility.  相似文献   

19.
The aim of the present series of experiments was to investigate the effect of the size of follicle from which the oocytes originate on their subsequent in vitro developmental ability. Ovarian follicles were isolated and grouped according to size (2–6 mm, >6 mm). Primary oocytes were carefully liberated and grouped according to morphology into one of five categories: denuded; expanded; with two or three layers of cumulus; with four or five layers; and with many (six or more) layers. Following in vitro maturation (IVM), fertilization (IVF), and culture (IVC), more oocytes with many layers of cumulus (P < 0.01, 70.2%, 73/104 vs. 46.8%, 87/186, respectively) and a higher proportion of blastocysts were obtained from follicles > 6 mm compared to 2–6 mm follicles (P < 0.01, 65.9%, 60/91 from >6 mm follicles vs. 34.3%, 34/99 from 2–6 mm follicles, respectively). Use of follicular fluid (BFF) from follicles of different sizes in the IVM medium did not significantly increase the cleavage rate or blastocyst yield compared to controls. Administration of procine folliclestimulating hormone (pFSH) to donors prior to slaughter was investigated as a possible means of increasing the number of larger sized follicles in the ovaries and, thereby, the quality of the recovered oocytes. It was found that administration of six injections of pFSH beginning 3 days prior to slaughter resulted in a significant increase (P < 0.001) in the proportion of follicles >6 mm in diameter (31.6%) compared to that in nontreated controls (6.6%) and to animals that received only four injection groups (9.4%). The blastocyst yield from oocytes originating from >6 mm follicles, whether from unstimulated or from pFSH-treated animals, was approximately double that of oocytes from 2–6 mm follicles (P < 0.01; 42.9%, 24/56 for >6 mm follicles vs. 22.8%, 21/92 for 2–6 mm follicles, respectively, for the 6 pFSH group; P > 0.05; 62.5%, 5/8 for >6 mm follicles vs. 32.8%, 22/67 for 2–6 mm follicles, respectively, for the control). © 1994 Wiley-Liss, Inc.  相似文献   

20.
Follicular oocyte growth and acquisition of developmental competence   总被引:7,自引:0,他引:7  
At birth the ovaries of mammalian females contain a finite store of primordial follicle oocytes. Each oocyte and its surrounding follicle cells share a communication system, the gap junction network, which facilitates the transfer of signals as well as nutrients in to and out off the oocyte and between follicle cells. The connexin family of proteins form the building blocks of this communication network, their expression is specific to the differentiated state of the granulose cell and the stage of folliculogenesis. Factors such as the c-kit receptor and its ligand, IGF-I, IGF-I receptors and the IGF binding proteins, members of the transforming growth factor beta (TGFbeta) family, in particular, some of the bone morphogenetic proteins, play prominent roles in oogenesis, primordial follicle activation and subsequent follicle/oocyte development culminating in oocyte ovulation. The oocyte undergoes a progressive series of morphological modifications as it grows and proceeds through the different stages of development. These structural rearrangements facilitate the increasing energy and nucleic acid synthesis requirements of the developing oocyte and are a prerequisite to the oocytes achievement of meiotic and embryo developmental competence. Several factors determine the ultimate competence of the oocyte, these have been investigated and attempts made to mimic these conditions in vitro. The complexity of the orchestration of the events that control oocyte growth and ultimate acquisition of developmental competence is under continuous investigation. The present review describes some of the findings to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号