首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calreticulin: not just another calcium-binding protein   总被引:15,自引:0,他引:15  
In this paper we review some of the rapidly expanding information about calreticulin, a Ca2+-binding/storage protein of the endoplasmic reticulum. The emphasis is placed on the structure and function of calreticulin. We believe that calreticulin is a multifunctional Ca2+-binding protein and that distinct functional properties of the protein may be localized to each of the three structural domains of calreticulin. Most evidence indicates that calreticulin is a resident endoplasmic reticulum protein. However, it can also be found outside of the endoplasmic reticulum compartment, i.e. in the nuclear envelope, in the nucleus, in the cytotoxic granules in T-lymphocytes and in acrosomal vesicles of sperm cells. The evidence reviewed here clearly suggests that calreticulin has other functions in addition to its role as a Ca2+ storage protein in the endoplasmic reticulum.Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum  相似文献   

2.
We propose an overview of the mechanism of Ca2+ transport through the sarcoplasmic reticulum membrane via the Ca2+-ATPase. We describe cytoplasmic calcium binding, calcium occlusion in the membrane and lumenal calcium dissociation. A channel-like structure is discussed and related to structural data on the membranous domain of the Ca2+-ATPase.Abbreviations SR Sarcoplasmic Reticulum - AMPPNP adenylyl-imidodiphosphate - AMPPCP adenylyl (,-methylene)-diphosphonate - FITC fluorescein 5-isothiocyanate - NBD 4-nitrobenzo-2-oxa-1,3-diazole - DCCD dicyclohexylcarbodiimide  相似文献   

3.
We have investigated the links between electrical excitation and contraction in mammalian heart muscle. Using isolated single cells from adult rat ventricle, a whole-cell voltage-clamp technique and quantitative fluorescence microscopy, we have measured simultaneously calcium current (Ica) and [Ca2+]i (with fura-2). We find that the voltage-dependence of Ica and the [Ca 2+]i-transient and the dependence of [Ca2+]i-transient on depolarization-duration cannot both be readily explained by a simple calcium-induced Ca-release (CICR) mechanism. Additionally, we find that when [Ca2+]i and [Na+]i are at their diastolic levels, activation of the Na-Ca exchange mechanism by depolarization does not measurably trigger the release of Ca2+i. Finally, measuring Ica in adult and neonatal rat heart cells and using the alkaloid ryanodine, we have carried out complementary experiments. These experiments show that there may be an action of ryanodine on Ica that is independent of [Ca2+]i and independent of a direct action of the alkaloid on the calcium channel itself. Along with experiments of others showing that ryanodine binds to the sarcoplasmic reticulum calcium-release channel/spanning protein complex, our data suggests a model to explain our findings. The model links the calcium channels responsible for Ica to the sarcoplasmic reticulum by means of one or more of the spanning protein(s). Information from the calcium channel can be communitated to the sarcoplasmic reticulum by this route and, presumably, information can move in the opposite direction from the sarcoplasmic reticulum to the calcium channel.  相似文献   

4.
Summary Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 m ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 m) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.  相似文献   

5.
Summary ATP-dependent45Ca2+ uptake was investigated in purified plasma membranes from rat pancreatic acinar cells. Plasma membranes were purified by four subsequent precipitations with MgCl2 and characterized by marker enzyme distribution. When compared to the total homogenate, typical marker enzymes for the plasma membrane, (Na+,K+)-ATPase, basal adenylate cyclase and CCK-OP-stimulated adenylate cyclase were enriched by 43-fold, 44-fold, and 45-fold, respectively. The marker for the rough endoplasmic reticulum was decreased by fourfold compared to the total homogenate. Comparing plasma membranes with rough endoplasmic reticulum, Ca2+ uptake was maximal with 10 and 2 mol/liter free Ca2+, and half-maximal with 0.9 and 0.5 mol/liter free Ca2+. It was maximal at 3 and 0.2 mmol/liter free Mg2+ concentration, at an ATP concentration of 5 and 1 mmol/liter, respectively, and at pH 7 for both preparations. When Mg2+ was replaced by Mn2+ or Zn2+ ATP-dependent Ca2+ uptake was 63 and 11%, respectively, in plasma membranes; in rough endoplasmic reticulum only Mn2+ could replace Mg2+ for Ca2+ uptake by 20%. Other divalent cations such as Ba2+ and Sr2+ could not replace Mg2+ in Ca2+ uptake. Ca2+ uptake into plasma membranes was not enhanced by oxalate in contrast to Ca2+ uptake in rough endoplasmic reticulum which was stimulated by 7.3-fold. Both plasma membranes and rough endoplasmic reticulum showed cation and anion dependencies of Ca2+ uptake. The sequence was K+>Rb+>Na+>Li+>choline+ in plasma membranes and Rb+K+Na+>Li+>choline+ for rough endoplasmic reticulum. The anion sequence was ClBrI>SCN>NO 3 >isethionate >cyclamate>gluconate>SO 4 2– glutarate and Cl>Br>gluconate>SO 4 2– >NO 3 >I>cyclamateSCN, respectively. Ca2+ uptake into plasma membranes appeared to be electrogenic since it was stimulated by an inside-negative K+ and SCN diffusion potential and inhibited by an inside-positive diffusion potential. Ca2+ uptake into rough endoplasmic reticulum was not affected by diffusion potentials. We assume that the Ca2+ transport mechanism in plasma membranes as characterized in this study represents the extrusion system for Ca2+ from the cell that might be involved in the regulation of the cytosolic Ca2+ level.  相似文献   

6.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

7.
Recent studies of isolated muscle membrane have enabled induction and monitoring of rapid Ca2+ release from sarcoplasmic reticulum (SR)5 in vitro by a variety of methods. On the other hand, various proteins that may be directly or indirectly involved in the Ca2+ release mechanism have begun to be unveiled. In this mini-review, we attempt to deduce the molecular mechanism by which Ca2+ release is induced, regulated, and performed, by combining the updated information of the Ca2+ release kinetics with the accumulated knowledge about the key molecular components.Abbreviations used: AMP-PCP, adenosine 5-(, -methylenetriphosphate); C1/2, concentration a half-maximal activation or inhibition; Con-A, concanavalin A; DACM,N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide; DCCD, dicyclohexylcarbodiimide; SR, sarcoplasmic reticulum; DHP, dihydropyridine; E-C, excitation-contraction; EP, phosphorylated intermediate of the enzyme; IP3, inositol 1,4,5-trisphosphate; JFM, junctional face membrane;M r, molecular weight; T-tubule, transverse-tubular system.  相似文献   

8.
Changes in the fluoresence ofN-acetyl-N-(5-sulfo-1-naphthyl)ethylenediamine (EDANS), being attached to Cys-674 of sarcoplasmic reticulum Ca2+-ATPase without affecting the catalytic activity, as well as changes in the intrinsic tryptophan fluorescence were followed throughout the catalytic cycle by the steady-state measurements and the stopped-flow spectrofluorometry. EDANS-fluorescence changes reflect conformational changes near the ATP binding site in the cytoplasmic domain, while tryptophan-fluorescence changes most probably reflect conformational changes in or near the transmembrane domain in which the Ca2+ binding sites are located. Formation of the phosphoenzyme intermediates (EP) was also followed by the continuous flow-rapid quenching method. The kinetic analysis of EDANS-fluorescence changes andEP formation revealed that, when ATP is added to the calcium-activated enzyme, conformational changes in the ATP binding site occur in three successive reaction steps; conformational change in the calcium enzyme substrate complex, formation of ADP-sensitiveEP, and transition of ADP-sensitiveEP to ADP-insensitiveEP. In contrast, the ATP-induced tryptophan-fluorescence changes occur only in the latter two steps. Thus, we conclude that conformational changes in the ATP binding site in the cytoplasmic domain are transmitted to the Ca2+-binding sites in the transmembrane domain in these latter two steps.Abbreviations SR sarcoplasmic reticulum - EP phosphoenzyme - EDANS N-acetyl-N-(5-sulfo-1-naphthyl)ethylenediamine - AMP-PCP adenosine 5-(, -methylene)triphosphate - NEM N-ethylmaleimide  相似文献   

9.
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum - PM plasma membrane - CPA cyclopiazonic acid - DTT dithiothreitol  相似文献   

10.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

11.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

12.
ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 M) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.Abbreviations cAMP adenosine 3,5-monophosphate - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - PLB phospholamban - SR sarcoplasmic reticulum - TFP trifluoperazine  相似文献   

13.
Summary The Ca2+-ATPase from rat liver microsomes has been solubilized in Triton X-100 and purified to homogeneity by ficollsucrose treatment, column chromatography with agarose-hexane adenosine 5-triphosphate Type 2, and high pressure liquid chromatography (HPLC). The purified enzyme obtained by this sequential procedure exhibited a 183-fold increase in specific activity. After ficoll-sucrose treatment, the activity of the Ca2+-ATPase was stable for at least two weeks when stored at –70°C. In SDS-polyacrylamide gels, several fractions from HPLC chromatography showed a single band at a position corresponding to a molecular weight of about 107 kDa. This value is consistent with the molecular weight of the phosphoenzyme intermediate of endoplasmic reticulum (ER) Ca2+-ATPase. Further characterization of the ER Ca2+-ATPase was performed by western immunoblots. Antiserum raised against the 100-kDa sarcoplasmic reticulum (SR) Ca2+-ATPase cross-reacted with the purified Ca2+-ATPase from rat liver ER membranes.  相似文献   

14.
This review will focus on the recent advance in the study of effect of transmembrane Ca2+ gradient on the function of membrane proteins. It consits of two parts: 1. Transmembrane Ca2+ gradient and sarcoplasmic reticulum Ca2+-ATPase; 2. Effect of transmembrane Ca2+ gradient on the components and coupling of cAMP signal transduction pathway. The results obtained indicate that a proper transmembrane Ca2+ gradient may play an important role in modulating the conformation and activity of SR Ca2+-ATPase and the function of membrane proteins involved in the cAMP signal transduction by mediating the physical state change of the membrane phospholipids.Abbreviations Cai Ca2+ inside vesicles - Ca0 Ca2+ outside vesicles - SR sarcoplasmic reticulum - PC phosphatidylcholine - PS phosphatidylserine - PG phosphatidylglycerol - PE phosphatidylethanolamine - DPH 1,6-diphenyl-1,3,5-hexatriene - n-AS n-(9-anthroyloxy) fatty acids - TMA-DPH 1-(4-trimethylammoniumphenyl)-6)-phenyl-1,3,5-hexatriene - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - -AR -adrenergic receptors - DHA dihydroalprenolol - AC adenylate cyclase - AC·Lca+– higher Ca2+ inside vesicles - AC·Lca– – lower Ca2+ on both side of vesicles - AC·Lca++ higher Ca2+ on both side of vesicles - AC·Lca– + higher Ca2+ outside vesicles - cAMP cyclic adenosine monophosphate - Gs stimulatory GTP-binding protein - GTP guanosine triposphate - GTPS guanosine 50-(3-thiotriphosphate)  相似文献   

15.
Rapid Ca2+ release from the sarcoplasmic reticulum (SR) can be triggered by either binding of heavy metals to a sulfhydryl (SH) group or by catalyzing the oxidation of endogenous groups to a disulfide. Ca2+ release has been monitored directly using isolated vesicle preparations or indirectly by monitoring phasic contractions in a skinned fiber preparation. SH oxidation triggered by addition of Cu2+ /mercaptans, phthalocyanine dyes, reactive disulfides, and various anthraquinones appears to involve a direct interaction with the Ca2+ release protein from the SR. A model is presented in which reversible oxidation and reduction of endogenous SH groups results in the opening and closing of the Ca2+ release channel from the SR.Abbreviations SR sarcoplasmic reticulum - SH sulfhydryl - T-tubule transverse tubule - 2,2-DTDP 2,2-dithiodipyridine - 4,4-DTDP 4,4-dithiodipyridine - DTT dithiothreitol  相似文献   

16.
A procedure for the isolation of highly purified sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been described using sucrose gradient centrifugation in zonal rotors. The yield of our purest fraction was 300 mg of sarcoplasmic reticulum protein using 1 kg muscle. The sarcoplasmic reticulum vesicles were relatively simple in composition. The Ca2+-pump protein accounted for most (approx. two-thirds) of the sarcoplasmic reticulum protein. Two other protein components, a Ca2+-binding protein and a M55 protein (approx. 55 000 daltons) each accounted for about 5–10% of the protein. Enrichment in the level of phosphoenzyme by the Ca2+-pump protein was regarded as an important index of the purification of sarcoplasmic reticulum vesicles. The sarcoplasmic reticulum vesicles were capable of forming 6.4 nmoles of 32P-labelled phosphoenzyme per mg protein and had a high capacity of energized Ca2+ uptake. The Ca2+-dependent formation of phosphoenzyme has been used to estimate the sarcoplasmic reticulum protein content in rabbit skeletal muscle and found to be about 2.5% of the total muscle protein.The Ca2+-pump and Ca2+-binding proteins were isolated with a purity of 90% or more by treating the purified sarcoplasmic reticulum vesicles with bile acids in the presence of salt. The solubilized Ca2+-pump protein reaggregated during dialysis together with phospholipid to form membranous vesicles which were capable of forming approx. 9 nmoles 32P-labelled phosphoenzyme per mg protein. The Ca2+-binding protein was water soluble and contained a high percentage of acidic amino acids (35% of total residues).Ca2+ binding by sarcoplasmic reticulum vesicles and by the Ca2+-pump and Ca2+-binding proteins was studied by equilibrium dialysis. Sarcoplasmic reticulum vesicles and Ca2+-pump protein contained nonspecific high-affinity Ca2+ binding sites with a capacity of 90–100 and 55–70 nmoles Ca2+ per mg protein, respectively. Both of them specifically bound 10–15 nmoles Ca2+ per mg protein. The binding constants for nonspecific and specific Ca2+ binding by both preparations were approx. 1 μM?1. The Ca2+-binding protein nonspecifically bound 900–1000 nmoles Ca2+ per mg protein with a binding constant of about 0.25 μM?1.  相似文献   

17.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

18.
A theoretical model of calcium signaling is presented that simulates oscillations of cytoplasmic calcium concentration ([Ca2+]cyt) in stomatal guard cells under the action of abscisic acid. The model is based on the kinetics of inositol 1,4,5-trisphosphate-sensitive calcium channels of endoplasmic reticulum and cyclic ADP-ribose-sensitive calcium channels of the tonoplast. The operation of two energy-dependent pumps—the Ca2+-ATPase of the endoplasmic reticulum and the Ca2+/H+ antiporter of the tonoplast—is also included in the model. It is shown that the removal of excessive Ca2+ from the cytoplasm by the tonoplast Ca2+/H+ antiporter is the main factor accounting for generation of [Ca2+]cyt oscillations at a wide range of ABA concentrations (0.01–1 M). The long period of [Ca2+]cyt oscillations in plant cells is explained by a slow release from inhibition of inositol 1,4,5-trisphosphate-gated calcium channels.  相似文献   

19.
J. P. Arsanto 《Protoplasma》1986,132(3):160-171
Summary In stem ofCicer arietinum, the loss of ribosomes attached to the rough ER cisternae during sieve element ontogeny results in the formation of sieve element reticulum (SER). By enhancing contrast of the SER, the OsFeCN postfixation/staining of material prefixed in glutaraldehyde in presence of calcium enables a good visualization of this membrane system. The pattern of staining in the SER is slightly lower when Mg2+ is substituted for Ca2+. These results support the view that the OsFeCN staining requires divalent cations and that the SER can accumulate Ca2+. The detection of Ca2+ by means of the pyroantimonate method in conjunction with X-ray microanalysis and the cytochemical localization of Ca2+ -ATPase in the SER cisternae provides evidence for Ca2+ sequestration by the SER. On the other hand, Ca2+-binding sites and ATPase activity are localized in P-protein. The ability to bind Ca2+ seems to enable the SER to function as an effective Ca2+ sink which may participate—with the sieve tube plasma membrane and mitochondria—in the maintenance of low Ca2+ concentration in phloem sap. In addition, the close association between P-protein and SER membranes exhibiting Ca2+-binding capabilities suggests that a Ca2+-mediated functional relationship may exist between the two structures. It is postulated that the SER may play a role in putative Ca2+ control of P-protein organization.Abbreviations SER sieve element reticulum - ER endoplasmic reticulum - P protein, phloem protein - OsFeCN method, osmium tetroxide-ferricyanide method - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether) N,N-tetraacetic acid - ATP adenosine 5-triphosphoric acid - ATPase adenosine triphosphatase - PCMB p chloromercuribenzoate - IDP inosine diphosphate  相似文献   

20.
Summary Our interest in the role of sulfhydryl groups (SH) in regulating or altering transport across biological membranes has focused on the significance of a critical SH group associated with the Ca2+-release protein from skeletal muscle sarcoplasmic reticulum (SR). We have shown that binding of heavy metals to this group or oxidation of this sulfhydryl to a disulfide induces rapid Ca2+ release from SR vesicles [1, 2] and induces contraction in skinned muscle fibers [3]. Several models are described in which oxidation and reduction might control the state of the Ca2+-release channel from SR.Abbreviations DTT Dithiothreitol, redox. - oxidation-reduction - SDS Sodium Dodecyl Sulfate - SH Sulfhydryl - SR Sarcoplasmic Reticulum - T-tubule Transverse tubule  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号