首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here, we investigated the role of the small Rho GTPases Rac, Cdc42, and Rho in the mechanism of laminin-1-mediated neurite outgrowth in PC12 cells. PC12 cells were transfected with plasmids expressing wild-type and dominant-negative mutants of Rac (RacN17), Cdc42 (Cdc42N17), or Rho (RhoN19). Over 90% of the dominant-negative Rho- and Rac-transfected cells extended neurites when plated on laminin-1; however, none of the PC12 cells transfected with the dominant-negative Cdc42 mutant extended neurites. In cells cotransfected with plasmids expressing c-Jun N-terminal kinase and wild-type Cdc42, laminin-1 treatment stimulated detectable levels of c-Jun phosphorylation. Further, cotransfection with c-Jun N-terminal kinase and the dominant-negative Cdc42 mutant blocked laminin-1-mediated c-Jun phosphorylation. Transfection with either wild-type Rac or the dominant-negative Rac did not effect c-Jun phosphorylation. These data demonstrate that Cdc42 is activated by laminin-1 and that Cdc42 activation is required in the mechanism of laminin-1-mediated neurite outgrowth.  相似文献   

2.
PAK promotes morphological changes by acting upstream of Rac.   总被引:18,自引:0,他引:18       下载免费PDF全文
A Obermeier  S Ahmed  E Manser  S C Yen  C Hall    L Lim 《The EMBO journal》1998,17(15):4328-4339
The serine/threonine kinase p21-activated kinase (PAK) has been implicated as a downstream effector of the small GTPases Rac and Cdc42. While these GTPases evidently induce a variety of morphological changes, the role(s) of PAK remains elusive. Here we report that overexpression of betaPAK in PC12 cells induces a Rac phenotype, including cell spreading/membrane ruffling, and increased lamellipodia formation at growth cones and shafts of nerve growth factor-induced neurites. These effects are still observed in cells expressing kinase-negative or Rac/Cdc42 binding-deficient PAK mutants, indicating that kinase- and p21-binding domains are not involved. Furthermore, lamellipodia formation in all cell lines, including those expressing Rac binding-deficient PAK, is inhibited significantly by dominant-negative RacN17. Equal inhibition is achieved by blocking PAK interaction with the guanine nucleotide exchange factor PIX using a specific N-terminal PAK fragment. We conclude that PAK, via its N-terminal non-catalytic domain, acts upstream of Rac mediating lamellipodia formation through interaction with PIX.  相似文献   

3.
Nine diacylglycerol kinase (DGK) isozymes have been identified. However, our knowledge of their individual functions is still limited. Here, we demonstrate the role of DGKgamma in regulating Rac1-governed cell morphology. We found that the expression of kinase-dead DGKgamma, which acts as a dominant-negative mutant, and inhibition of endogenous DGKgamma activity with R59949 induced lamellipodium and membrane ruffle formation in NIH3T3 fibroblasts in the absence of growth factor stimulation. Reciprocally, lamellipodium formation induced by platelet-derived growth factor was significantly inhibited upon expression of constitutively active DGKgamma. Moreover, the constitutively active DGKgamma mutant suppressed integrin-mediated cell spreading. These effects are isoform-specific because, in the same experiments, none of the corresponding mutants of DGKalpha and DGKbeta, closely related isoforms, affected cell morphology. These results suggest that DGKgamma specifically participates in the Rac1-mediated signaling pathway leading to cytoskeletal reorganization. In support of this, DGKgamma co-localized with dominant-active Rac1 especially in lamellipodia. Moreover, we found that endogenous DGKgamma was physically associated with cellular Rac1. Dominant-negative Rac1 expression blocked the lamellipodium formation induced by kinase-dead DGKgamma, indicating that DGKgamma acts upstream of Rac1. This model is supported by studies demonstrating that kinase-dead DGKgamma selectively activated Rac1, but not Cdc42. Taken together, these results strongly suggest that DGKgamma functions through its catalytic action as an upstream suppressor of Rac1 and, consequently, lamellipodium/ruffle formation.  相似文献   

4.
Salmonella typhimurium colonization of the intestinal epithelium initiates biochemical cross-talk between pathogen and host that results in the secretion of chemokines, such as interleukin (IL)-8, that direct neutrophil migration to the site of infection. In nonpolarized cells, Rac1 and Cdc42 have been shown to regulate both bacterial invasion and signaling events leading to nuclear responses and IL-8 secretion. However, because the underlying actin cytoskeleton and the associated signaling machinery are distributed much differently in polarized epithelial cells, we used polarized Madin-Darby canine kidney monolayers to investigate the role of Rac1 and Cdc42 in S. typhimurium-induced pro-inflammatory responses in the more physiologically relevant polarized state. In Madin-Darby canine kidney monolayers expressing dominant-negative Rac1 or Cdc42, both Salmonella- and tumor necrosis factor alpha-induced activation of NFkappaB and mitogen-activated protein kinase signaling cascades proceeded normally, but IL-8 secretion was inhibited. We found that Rac1 and Cdc42 were not involved in early pro-inflammatory signaling events, as in nonpolarized cells, but rather regulated the basolateral exocytosis and secretion of IL-8. In contrast, dominant-negative Rac1 inhibited apical actin pedestal formation, indicating that pedestal formation and nuclear signaling for pro-inflammatory activation are not linked. These findings indicate that there are significant differences in the requirements of pathogen-induced host cell signaling pathways in polarized and nonpolarized cells.  相似文献   

5.
Classic cadherins function as adhesion-activated cell signaling receptors. On adhesive ligation, cadherins induce signaling cascades leading to actin cytoskeletal reorganization that is imperative for cadherin function. In particular, cadherin ligation activates actin assembly by the actin-related protein (Arp)2/3 complex, a process that critically affects the ability of cells to form and extend cadherin-based contacts. However, the signaling pathway(s) that activate Arp2/3 downstream of cadherin adhesion remain poorly understood. In this report we focused on the Rho family GTPases Rac and Cdc42, which can signal to Arp2/3. We found that homophilic engagement of E-cadherin simultaneously activates both Rac1 and Cdc42. However, by comparing the impact of dominant-negative Rac1 and Cdc42 mutants, we show that Rac1 is the dominant regulator of cadherin-directed actin assembly and homophilic contact formation. To pursue upstream elements of the Rac1 signaling pathway, we focused on the potential contribution of Tiam1 to cadherin-activated Rac signaling. We found that Tiam1 or the closely-related Tiam2/STEF1 was recruited to cell-cell contacts in an E-cadherin-dependent fashion. Moreover, a dominant-negative Tiam1 mutant perturbed cell spreading on cadherin-coated substrata. However, disruption of Tiam1 activity with dominant-negative mutants or RNA interference did not affect the ability of E-cadherin ligation to activate Rac1. We conclude that Rac1 critically influences cadherin-directed actin assembly as part of a signaling pathway independent of Tiam1. actin cytoskeleton; Cdc42; E-cadherin  相似文献   

6.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

7.
Carbachol stimulates granule exocytosis, phospholipase C (PLC), and phospholipase D (PLD) in RBL-2H3hm1 mast cells by a mechanism that involves Galphaq. However, mastoparan stimulates the same responses through Gi protein. Both Gi and Galphaq pathways are suppressed by Clostridium difficile toxin B, suggesting that Rac and Cdc42 small GTPases are also involved. Over-expression of beta1Pix, a guanine nucleotide exchange factor for Rac and Cdc42, enhances mastoparan-but not carbachol-induced hexosaminidase secretion and PLC and PLD activation. Furthermore, cells expressing beta1Pix exhibit elevated levels of mastoparan-stimulated IP3 production. Taken together, these findings implicate beta1Pix in regulating hexoasaminidase secretion and IP3 production in early stage upon mastoparan stimulation.  相似文献   

8.
PTP mu is expressed in the developing nervous system and promotes growth and guidance of chick retinal ganglion cells. Using a newly developed growth cone rearrangement assay, we examined whether the small G-proteins were involved in PTP mu-dependent signaling. The stimulation of retinal cultures with purified PTP mu resulted in a striking morphological change in the growth cone, which becomes dominated by filopodia within 5 min of addition. This rearrangement in response to PTP mu stimulation was mediated by homophilic binding. We perturbed GTPase signaling using Toxin B, which inhibits Cdc42, Rac, and Rho, as well as the toxin Exoenzyme C3 that inhibits Rho. The PTP mu-induced growth cone rearrangement was blocked by Toxin B, but not by Exoenzyme C3. This result suggests that either Cdc42 or Rac are required but not Rho. To determine which GTPase was involved in PTP mu signaling, we utilized dominant-negative mutants of Cdc42 and Rac. Dominant-negative Cdc42 blocked PTP mu-induced rearrangement, while wild-type Cdc42 and dominant-negative Rac did not. Together, these results suggest a molecular signaling cascade beginning with PTP mu homophilic binding at the plasma membrane and the activation of Cdc42, which acts on the actin cytoskeleton to result in rearrangement of the growth cone.  相似文献   

9.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

10.
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.  相似文献   

11.
Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.  相似文献   

12.
Both amidated gastrin (Gamide) and glycine-extended gastrin (Ggly) stimulate gastrointestinal cell proliferation and migration. Binding of Gamide to the cholecystokinin-2 receptor activates small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42), and dominant-negative mutants of Rho or Cdc42 block Gamide-stimulated cell proliferation and survival. In comparison, little is known about the Ggly signaling transduction pathway leading to cell proliferation and migration. The present study examined the roles of the small G proteins Rho, Rac, and Cdc42 in Ggly-induced proliferation and migration of the mouse gastric epithelial cell line IMGE-5. Ggly stimulated the activation of Rho and its downstream effector protein ROCK. The activation of Rho and ROCK mediated Ggly-induced cell proliferation and migration as inhibition of Rho by C3, or ROCK by Y-27632, completely blocked these effects of Ggly. Ggly also stimulated tyrosine phosphorylation of focal adhesion kinase, and stimulation was reversed by addition of C3 and Y-27632. In contrast to the effects of Rho and ROCK, inhibition of the Rac or Cdc42 pathways by expression of dominant-negative mutants of Rac or Cdc42 did not affect Ggly-induced cell proliferation and migration. These results demonstrate that Ggly stimulates IMGE-5 cell proliferation and migration through a Rho/ROCK-dependent pathway but not via Rac- or Cdc42-dependent pathways.  相似文献   

13.
Jung ID  Lee J  Yun SY  Park CG  Choi WS  Lee HW  Choi OH  Han JW  Lee HY 《FEBS letters》2002,532(3):351-356
Autotaxin (ATX) is a strong motogen that can increase invasiveness and angiogenesis. In the present study, we investigated the signal transduction mechanism of ATX-induced tumor cell motility. Unlike N19RhoA expressing cells, the cells expressing N17Cdc42 or N17Rac1 showed reduced motility against ATX. ATX activated Cdc42 and Rac1 and increased complex formation between these small G proteins and p21-activated kinase (PAK). Furthermore, ATX phosphorylated focal adhesion kinase (FAK) that was not shown in cells expressing dominant negative mutants of Cdc42 or Rac1. Collectively, these data strongly indicate that Cdc42 and Rac1 are essential for ATX-induced tumor cell motility in A2058 melanoma cells, and that PAK and FAK might be also involved in the process.  相似文献   

14.
Stimulation of insulin secretion by glucose and other secretagogues from pancreatic islet beta-cells is mediated by multiple signaling pathways. Rac1 is a member of Rho family GTPases regulating cytoskeletal organization, and recent evidence also implicates Rac1 in exocytotic processes. Herein, we report that exposure of insulin-secreting (INS) cells to stimulatory glucose concentrations caused translocation of Rac1 from cytosol to the membrane fraction (including the plasmalemma), an indication of Rac1 activation. Furthermore, glucose stimulation increased Rac1 GTPase activity. Time course study indicates that such an effect is demonstrable only after 15 min stimulation with glucose. Expression of a dominant-negative Rac1 mutant (N17Rac1) abolished glucose-induced translocation of Rac1 and significantly inhibited insulin secretion stimulated by glucose and forskolin. This inhibitory effect on glucose-stimulated insulin secretion was more apparent in the late phase of secretion. However, N17Rac1 expression did not significantly affect insulin secretion induced by high K+. INS-1 cells expressing N17Rac1 also displayed significant morphological changes and disappearance of F-actin structures. Expression of wild-type Rac1 or a constitutively active Rac1 mutant (V12Rac1) did not significantly affect either the stimulated insulin secretion or basal release, suggesting that Rac1 activation is essential, but not sufficient, for evoking secretory process. These data suggest, for the first time, that Rac1 may be involved in glucose- and forskolin-stimulated insulin secretion, possibly at the level of recruitment of secretory granules through actin cytoskeletal network reorganization.  相似文献   

15.
FcepsilonRI signaling in rat basophilic leukemia cells depends on phosphatidylinositol 3-kinase (PI3-kinase) and the small GTPase Rac. Here, we studied the functional relationship among PI3-kinase, its effector protein kinase B (PKB), and Rac using inhibitors of PI3-kinase and toxins inhibiting Rac. Wortmannin, an inhibitor of PI3-kinase, blocked FcepsilonRI-mediated tyrosine phosphorylation of phospholipase Cgamma, inositol phosphate formation, calcium mobilization, and secretion of hexosaminidase. Similarly, Clostridium difficile toxin B, which inactivates all Rho GTPases including Rho, Rac and Cdc42, and Clostridium sordellii lethal toxin, which inhibits Rac (possibly Cdc42) but not Rho, blocked these responses. Stimulation of the FcepsilonRI receptor induced a rapid increase in the GTP-bound form of Rac. Whereas toxin B inhibited the Rac activation, PI3-kinase inhibitors (wortmannin and LY294002) had no effect on activation of Rac. In line with this, wortmannin had no effect on tyrosine phosphorylation of the guanine nucleotide exchange factor Vav. Wortmannin, toxin B, and lethal toxin inhibited phosphorylation of PKB on Ser(473). Similarly, translocation of the pleckstrin homology domain of PKB tagged with the green fluorescent protein to the membrane, which was induced by activation of the FcepsilonRI receptor, was blocked by inhibitors of PI3-kinase and Rac inactivation. Our results indicate that in rat basophilic leukemia cells Rac and PI3-kinase regulate PKB and suggest that Rac is functionally located upstream and/or parallel of PI3-kinase/PKB in FcepsilonRI signaling.  相似文献   

16.
During cortical development, newly generated neurons migrate radially toward their final positions. Although several candidate genes essential for this radial migration have been reported, the signaling pathways regulating it are largely unclear. Here we studied the role of phosphatidylinositol (PI) 3-kinase and its downstream signaling molecules in the radial migration of cortical neurons in vivo and in vitro. The expression of constitutively active and dominant-negative PI 3-kinases markedly inhibited radial migration. In the neocortical slice culture, a PI 3-kinase inhibitor suppressed the formation of GTP-bound Rac1 and Cdc42 and radial migration. Constitutively active and dominant-negative forms of Rac1 and Cdc42 but not Akt also significantly inhibited radial migration. In migrating neurons, wild-type Rac1 and Cdc42 showed different localizations; Rac1 localized to the plasma membrane and Cdc42 to the perinuclear region on the side of the leading processes. These results suggest that both the PI 3-kinase/Rac1 and Cdc42 pathways are involved in the radial migration of cortical neurons and that they have different roles.  相似文献   

17.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

18.
The family of p21-activated kinases (PAKs) have been implicated in the rearrangement of actin cytoskeleton by acting downstream of the small GTPases Rac and Cdc42. Here we report that even though Cdc42/Rac1 or Akt are not activated, phosphatidylinositol-3 (PI-3) kinase activation induces PAK1 kinase activity. Indeed, we demonstrate that PI-3 kinase associates with the N-terminal regulatory domain of PAK1 (amino acids 67-150) leading to PAK1 activation. The association of the PI-3 kinase with the Cdc42/Rac1 binding-deficient PAK1(H83,86L) confirms that the small GTPases are not involved in the PI-3 kinase-PAK1 interaction. Furthermore, PAK1 was activated in cells expressing the dominant-negative forms of Cdc42 or Rac1. Additionally, we show that PAK1 phosphorylates actin, resulting in the dissolution of stress fibers and redistribution of microfilaments. The phosphorylation of actin was inhibited by the kinase-dead PAK1(K299R) or the PAK1 autoinhibitory domain (PAK1(83-149)), indicating that PAK1 was responsible for actin phosphorylation. We conclude that the association of PI-3 kinase with PAK1 regulates PAK1 kinase activity through a Cdc42/Rac1-independent mechanism leading to actin phosphorylation and cytoskeletal reorganization.  相似文献   

19.
Their eponymous morphology and unique ability to activate naive T cells are hallmark features of dendritic cells (DCs). Specific properties of the actin cytoskeleton may define both characteristics. In search for regulators that coordinate DC phenotype and function, we observed strongly increased expression of the actin-remodeling GTPases Cdc42 and Rac1 during DC development from human stem cells. Cdc42 and Rac1 are constitutively active in immature DCs, and their activity is further up-regulated by maturational stimuli such as LPS or CD40L. Activation of Rac1 is associated with its rapid recruitment into lipid rafts. Cdc42 is not recruited into rafts, but readily activated by raft-associated moieties. The functional interplay of rafts, GTPases, and cortical actin is further shown by GTPase activation and actin remodeling after pharmacological disruption of lipid rafts and by the loss of the actin-based DC morphology by transfection of dominant-negative Cdc42 and Rac1. Both Cdc42 and Rac1 also control the transport of essential immunostimulatory molecules to the DC surface. Transfection with dominant-negative GTPases led to reduced surface expression of MHC class I and CD86. Consecutively, DCs display a reduced stimulatory capacity for CD8(+) T cells, whereas MHC class II-dependent stimulation of CD4(+) T cells remains unperturbed. We conclude that Cdc42 and Rac1 signaling controls DC morphology and conditions DCs for efficient CD8(+) T cell stimulation.  相似文献   

20.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号