首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《农业工程》2014,34(1):26-33
Based on the vertically interval sampling in 25 sampling sites in Dangxiong Co salt lake in 2011, a preliminary investigation on population spatial distribution and cysts resources of Artemia in the lake has been conducted. The study achieves four new progresses. First, the average density of Artemia and Artemia cysts in the lake is 4.157 × 103 ind. m−2 and 8.069 × 104 ind. m−2, respectively. Among Artemia, the adults account for 60.31%; Second, different from other salt lakes in horizontal distribution, the Artemia population mainly distributes in the open water, only a little in the shallow water, and there is no distribution in the longshore area in the north part and the estuary region; Third, in vertical distribution, 44.24% of individuals intensively distribute in the upper water layer within 2.0 m, especially 0–0.2 m, where the average density of Artemia and cysts are maximum (129.488 ind. L−1 and 5.728 ind. L−1, respectively). A decrease of distribution density is accompanied by an increase of water depth basically, the percentage of Artemia and cysts decrease to 0.68% and 4.60%, respectively; Fourth, the cysts resources of 14.96 t in the lake are assessed using contour map. 66.35% of them distributed in 0.0–2.0 m water layer and 49.06% concentrate in the 18.21% areas of the central water; Fifth, quantity of cysts suitable for development in the lake is 2.399 ± 0.320 t, with an upper limit of 0.879 t. The study can provide a reference for the sustainable development and exploitation of Artemia in Dangxiong Co salt lake.  相似文献   

2.
At Lake Barrine (17°15′S, 145°38′E, 721 m a.s.l.) under water > 55 m deep, the uppermost sediment is composed of alternating detritus-poor and detritus-rich laminae. The former are interpreted as the continuous sedimentation (mostly plankton) from the undisturbed water body, the latter as redeposition during turbulent periods, induced by unusually cold winters, of material previously accumulated under shallower water. A continuous, 4.5 m long, stratigraphic record from beneath the deepest water (67 m) consists of about 3000 individual laminations, punctuated by characteristic, relatively thick, ‘marker bands’. Each lamina was measured and allocated to one of the two categories. A chronology based on 28 radiocarbon dates, monotonically decreasing in age with decreasing depth, established a span from 5 ka cal BP to 1987 AD, the collection year. The plot of the durations of detritus-poor laminations, hence the return times of laminating events, is divisible into 20 Sections. Laminating events are not annual but 80% of return times lie between 1 and 6 years. Apart from the lowermost three Sections (5 ka–3.9 ka) having a greater number of long return times than the rest, there is no systematic change in the modes or ranges of the relative frequencies of return times between Sections. Prediction of the characteristics of a Section from those of its predecessor is impossible, nor, within a Section, is any return time a good predictor of the subsequent one. Extreme events are indicated most obviously by the marker bands which represent periods of unusual turbulence in the water body, perhaps by the occurrence of several consecutive very cold winters or the passage of a cyclonic wind directly over the lake. Long placid periods, evidenced by thick detritus-poor laminae spanning > 10 years, are not systematically distributed through time except for their absence from 3.0 ka to 2.3 ka and their concentration from 5.0 ka to 4.4 ka. Uncertainties imposed by the methods used are discussed as are those relating to their palaeoclimatic application.  相似文献   

3.
《Aquatic Botany》2007,86(4):393-401
We investigated the distribution of two charophyte species, Chara fibrosa var. fibrosa (A. Br.) and Nitella hyalina (DC.) Ag., in Myall Lake, a shallow lake in New South Wales, Australia, in an attempt to elucidate the factors causing their distribution patterns. The field study was carried out from July 2003 to May 2005 and charophytes were sampled together with bottom sediments at 20 sampling locations in the lake on 13 occasions. Charophyte biomass (0–321 g DW m−2) displayed an optimum curve with depth and maximum biomass occurred between 1 and 2.5 m depth. In deeper water, shoots were longer (i.e., around 30 cm at 1 m depth to 60–90 cm between 2 and 4 m depth). Oospore and antheridia densities were higher in shallower water with a maximum around 80 cm. Plants growing in shallow depths had shorter internodes implying a short life cycle of shoots, and nodal spacing was relatively regular in contrast to its deep water counterparts although spacing tended to increase at locations farther from the apex. The present study also reports that there is an apparent decline in sexual propagule production rates with increasing water depth, further highlighting the different morphological and reproductive acclimations of charophytes in shallow and deep water.  相似文献   

4.
A classification tool suitable for establishing the ecological status of lakes based on fish population parameters has been developed for the Republic of Ireland and Northern Ireland (EU Water Framework Directive Ecoregion 17). A lake typology relevant to fish populations in lakes from Ecoregion 17 was produced as part of the ecological classification tool development. Four lake types were determined based on fish metrics and abiotic variables from 43 “reference” lakes. The specific lake fish typology categorised lakes into low (≤67 CaCO3 mg L−1) or high (>67 CaCO3 mg L−1) alkalinity, and shallow (≤17 m) or deep (>17 m) maximum depth. The fish in lakes classification tool (FIL2) follows a novel multimetric predictive approach, assigning ecological status to a lake using two independent methods. FIL2 qualitatively defines a lake's ecological status based on fish metrics using discriminant classification rules and, using a generalised linear model, quantitatively derives an Ecological Quality Ratio (EQR, 0 < EQR < 1), along with associated confidence intervals. It is recommended that both methods are used to validate output and cross-check and highlight potential misclassification.  相似文献   

5.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

6.
The study was carried out in the Pinus roxburghii Sargent (Chir pine) forest in the sub-tropical region of Garhwal Himalaya to assess the effect of fire on soil nutrient status at different altitudes (700 m, 800 m and 1000 m), soil depths (0–20 cm, 20–40 cm and 40–60 cm) and on under storey vegetation. The soil nutrients and under storey vegetation were assessed before fire (pre-fire) and after fire (post-fire). The results of the study indicate that fire plays an important role in soil nutrient status and under storey vegetation. The nutrients (soil organic carbon, nitrogen, phosphorus and potassium), decreased in post-fire assessment and with increasing altitudes, and soil depths, compared to pre-fire assessment. The under storey vegetation diminished after fire in all forest sites. The study concludes that in Chir pine forest, fire plays a role in reducing soil nutrients along the altitudinal gradient, soil depths and under storey vegetation. Thus, these nutrients can be saved through some management practices e.g. by early controlled burning and by educating local villagers about the negative impacts of severe wild fires on soil and vegetation.  相似文献   

7.
Buffer zones along rivers and streams can provide water quality services by filtering nutrients, sediment and other contaminants from the surface. Redundancy analysis was used to determine the influence of the landscape pattern at the entire catchment scale and at multiple buffer zone scales (100 m, 300 m, 500 m, 1000 m and 1500 m) on the water quality in a highly urbanised watershed. Change-point analysis was further applied to estimate the specific locations along a gradient of landscape metric that result in a sudden change in the water quality variable. The landscape characteristics for 100 m buffer zones appeared to have a slightly greater influence on the water quality than the entire catchment. The patch density of urban land and the large patch index of water were recognised as the dominant variables influencing the water quality for a 100 m buffer zone. The result of change-point analysis indicated key interval values of the two landscape metrics within the 100 m buffer zone. When the patch density of urban land was >30–40 n/100 ha and the largest patch index of water was >2.5–3.5%, the watershed water quality appeared to be better protected.  相似文献   

8.
The main objective of this study was to quantify nutrient transport dynamics of a previously ungauged, temperate watershed (145 km2) surrounding a shallow eutrophic lake and discern lake response to external nutrient loading, based on soil water assessment tool (SWAT) and the Organization of Economic Cooperation and Development (OECD) empirical lake models, respectively. A SWAT model was used to simulate baseline nutrient dynamics after its calibration and validation against daily tributary flow, total dissolved phosphorus (TDP), total phosphorus (TP), and nitrate (NO3) loads. On the watershed scale, median annual TDP, TP, and NO3 losses were 0.4, 1.1, and 2.0 kg ha 1, respectively. The highest median annual TP and NO3 losses were estimated at 3.7 and 7.7 kg ha 1 for pastureland and 1.7 and 3.8 kg ha 1 for cropland and mixed forests, respectively. Baseflow was the major nutrient transport pathway over a wide range of precipitation events (450 to 900 mm yr 1). Erosion was the predominant surface process exporting P across the watershed. Critical source areas (CSAs) of TP and NO3 comprised 17% and 4% of the watershed, respectively. Annual mean TP, and mean and maximum chlorophyll content indicated a hyper-eutrophication risk for the lake. An external P load reduction by excess of 80% could be necessary to restore mesotrophy in the lake. Our results suggested that subsurface P transport should not be overlooked a priori when groundwater-dependent and extensively farmed watersheds are managed for eutrophication abatement.  相似文献   

9.
《Zoology (Jena, Germany)》2015,118(5):320-324
Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude.  相似文献   

10.
《Aquatic Botany》2007,87(1):43-48
CH4 and CO2 fluxes across the water–atmosphere interface were measured over a 24 h day–night cycle in a shallow oxbow lake colonized by the water chestnut (Trapa natans L.) (Lanca di Po, Northern Italy). Only exchanges mediated by macrophytes were measured, whilst gas ebullition was not considered in this study. Measurements were performed from 29 to 30 July 2005 with short incubations, when T. natans stands covered the whole basin surface with a mean dry biomass of 504 ± 91 g m−2. Overall, the oxbow lake resulted net heterotrophic with plant and microbial respiration largely exceeding carbon fixation by photosynthesis. The water chestnut stand was a net sink of CO2 during the day-light period (−60.5 ± 8.5 mmol m−2 d−1) but it was a net source at night (207.6 ± 6.1 mmol m−2 d−1), when the greatest CO2 efflux rate was measured across the water surface (28.2 ± 2.4 mmol m−2 h−1). The highest CH4 effluxes (6.6 ± 1.8 mmol m−2 h−1) were determined in the T. natans stand during day-time, whilst CH4 emissions across the plant-free water surface were greatest at night (6.8 ± 2.1 mmol m−2 h−1). Therefore, we assumed that the water chestnut enhanced methane delivery to the atmosphere. On a daily basis, the oxbow lake was a net source to the atmosphere of both CO2 (147.1 ± 10.8 mmol m−2 d−1) and CH4 (116.3 ± 8.0 mmol m−2 d−1).  相似文献   

11.
It is essential to calculate micromotions at the bone-implant interface of an uncemented femoral total knee replacement (TKR) using a reliable computational model. In the current study, experimental measurements of micromotions were compared with predicted micromotions by Finite Element Analysis (FEA) using two bone material models: linear elastic and post-yield material behavior, while an actual range of interference fit was simulated. The primary aim was to investigate whether a plasticity model is essential in order to calculate realistic micromotions. Additionally, experimental bone damage at the interface was compared with the FEA simulated range.TKR surgical cuts were applied to five cadaveric femora and micro- and clinical CT- scans of these un-implanted specimens were made to extract geometrical and material properties, respectively. Micromotions at the interface were measured using digital image correlation. Cadaver-specific FEA models were created based on the experimental set-up. The average experimental micromotion of all specimens was 53.1 ± 42.3 µm (mean ± standard deviation (SD)), which was significantly higher than the micromotions predicted by both models, using either the plastic or elastic material model (26.5 ± 23.9 µm and 10.1 ± 10.1 µm, respectively; p-value < 0.001 for both material models). The difference between the two material models was also significant (p-value < 0.001). The predicted damage had a magnitude and distribution which was comparable to the experimental bone damage. We conclude that, although the plastic model could not fully predict the micro motions, it is more suitable for pre-clinical assessment of a press-fit TKR implant than using an elastic bone model.  相似文献   

12.
Even though the spermatozoa of several strepsipteran species were described earlier, no data were available for the basal family Mengenillidae. Well-fixed material of the recently described Tunisian species Mengenilla moldrzyki was used for a detailed examination of the sperm ultrastructure. The total length is c. 30 μm. The head region contains a conical acrosome vesicle (0.3-0.35 μm) and an elongated nucleus (7.3 μm) with dense chromatin. Some granular material along with a uniformely dense centriole adjunct and two mitochondrial derivatives are visible at the posterior end of the nucleus. The material of the centriole adjunct does not extend along the flagellum and accessory bodies are absent. The mitochondrial derivatives are elongated structures crossed by a longitudinal crista but lacking parallel transverse cristae and paracrystalline material in the dense matrix. The mitochondrial derivatives gradually reduce their size and end at the most posterior tail region. The flagellar axoneme has a 9 + 9 + 2 pattern and originates beneath the nucleus. In the terminal tail region the axoneme gradually disintegrates. Despite the extreme specialization of the endoparasitc group, strepsipteran spermatozoa are mostly characterized by plesiomorphies. The pattern within the order is largely uniform, but Mengenilla displays several apomorphic features compared to the presumptive strepsipteran groundplan (e.g., absence of crystallizations and cristae in the mitochondrial derivatives). The subdivision of the intertubular material into two compartments with a dense beak-like structure adhering to the tubular wall supports a clade Coleopterida (=Strepsiptera + Coleoptera) + Neuropterida.  相似文献   

13.
Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent ‘taxon-free’ trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19–27 μm), S3 (28–36 μm), S4 (37–50 μm) and S5 (53–71 μm) were the top four levels in frequency of occurrence, while rank S1 (13–17 μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)  S2/S4 (summer)  S4 (autumn)  S2 (winter) in frequency of occurrence; S1 (spring)  S4 (summer)  S2 (autumn)  S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems.  相似文献   

14.
The Water Framework Directive introduced in Europe major changes to improve the management of water resources. This study aims to highlight some of the potential implications of its implementation for lake water monitoring in Italy. A Life+ project was launched to plan the first monitoring of lake macroinvertebrates standardized at the national level.Quantile regression analysis was used to explain different metrics of diversity describing macroinvertebrate communities in response to twenty-one variables representing chemical, physical and morphological characteristics of the environment. Nine lakes located in two Italian regions (Piedmont and Sardinia) were analyzed covering a wide trophic spectrum, from oligotrophy to hyper-eutrophy. The lakes were sampled following the national standardized protocol with samples covering the three recognized lake zones: littoral, sublittoral, profundal.The studied lakes had high chemical variability with conductivity ranging between 53 and 561 μS/cm, pH between 6.5 and 9.1, and alkalinity between 14 and 398 mg/l. The bottom sediments were characterized by fine sand (range 51–99%), followed by silt (1–35%) and clay (0–28%). When the Lake Habitat Survey was also applied to these lakes, its synthetic indices (LHMS, Lake Habitat Modification Score and LHQA, Lake Habitat Quality Assessment) produced higher values in natural lakes (mean values ± SD: LHMS = 26 ± 7, LHQA = 57 ± 3) than in the reservoirs (LHMS = 22 ± 4, LHQA = 52 ± 6). In all lakes, macroinvertebrates mainly consisted of chironomids and oligochaetes characterized by relative abundances up to 80% and >90%, respectively.Using quantile regression to evaluate limiting responses, only two variables, namely sampling depth and oxygen percent saturation (oxygen content), resulted the ones that best explained all the analyzed metrics of diversity of the macroinvertebrate communities. Depth and oxygen were then used to suggest synthetic models describing the various metrics of potential community diversity. These models can help the environmental agencies responsible for monitoring at the national level in distinguishing entire lakes or part of them with high biodiversity from those in altered conditions and then address remediation efforts toward the water bodies with the most critical conditions. Such approach could also be used to optimize the sampling procedures for the application of the Benthic Quality Index for lakes currently adopted at national level.  相似文献   

15.
An on-line flow injection pre-concentration-flame atomic absorption spectrometry method was developed to determine trace zinc in water (tap, dam, and well water), biological (hair and nail), and liver samples. As a solid phase extractant, a synthesized new chelating resin, poly(2-thiozylmethacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propane sulfonic acid) was used. The resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, and surface area by nitrogen sorption. A pre-concentration factor of 40-fold for a sample volume of 12.6 mL was obtained by using the time-based technique. The detection limit for the pre-concentration method was found to be 2.2 μg L?1. The precision (as RSD,%) for 10 replicate determinations at the 0.04 μg mL?1 Zn concentration was 1.2%. The calibration graph using the pre-concentration system for zinc was linear with a correlation coefficient of 0.998 in the concentration range from 0.005 to 0.05 μg mL?1. The applicability and accuracy of the developed method were estimated by the analysis spiked water, biological, liver samples (83–105%), and also certified reference material TMDA-70 (fortified lake water) and SPS-WW1 Batch 111-Wastewater. The results were in agreement with the certified values.  相似文献   

16.
Early survival and growth of black alder, silver birch and Scots pine were investigated on reclaimed extremely stony and heterogeneous calcareous (pH 8) opencast oil shale mining areas (OOSMAs). Biomass allocation, production, leaf and root adaptations, and mineral nutrition in relation to tree species and soil heterogeneity were analysed. The adaptive strategies of tree species in first-year plantations on OOSMA were different. Scots pine allocated 1.5–2 times more biomass into leaves and fine roots than deciduous trees. The lower leaf/fine root biomass ratio was in proportion to the better survival (%) of seedlings, decreasing in the following order: black alder (93%)  Scots pine (83%) > silver birch (64%). Deciduous trees improved mineral nutrition more by fine-root morphological adaptations than Scots pine; e.g. the mean specific root length (SRL, m g?1) of short roots increased in the following order: Scots pine (62) < black alder (172) < silver birch (314). The effect of soil heterogeneity on growth and adaptations was minor. All studied species suffered from P and N, and deciduous species also from K deficiency. In the first year after planting, black alder was best adapted to the harsh conditions of the post-mining substrate. The approaches of this study can be used for other regions where wastelands require reclamation.  相似文献   

17.
《Ecological Engineering》2007,29(2):192-199
Trees integrated into the range- and pasturelands of Florida could remove nutrients from deeper soil profiles that would otherwise be transported to water bodies and cause pollution. Soil nitrogen (N) and phosphorus (P) concentrations were monitored in three pastures: a treeless pasture of bahiagrass (Paspalum notatum); a pasture of bahiagrass under 20-year-old slash pine (Pinus elliotti) trees (silvopasture); and a pasture of native vegetation under pine trees (native silvopasture). Soil analysis from 10 profiles within each pasture showed that P concentrations were higher in treeless pasture (mean: 9.11 mg kg−1 in the surface to 0.23 mg kg−1 at 1.0 m depth) compared to silvopastures (mean: 2.51 and 0.087 mg kg−1, respectively), and ammonium–N and nitrate–N concentrations were higher in the surface horizon of treeless pasture. The more extensive rooting zones of the combined stand of tree + forage may have caused higher nutrient uptake from silvopastures than treeless system. Further, compared to treeless system, soils under silvopasture showed higher P storage capacity. The results suggest that, compared to treeless pasture, silvopastoral association enhances nutrient retention in the system and thus reduces chances for nutrient transport to surface water. The study reflects the scope for applying ecological-engineering and ecosystem-restoration principles to silvopastoral-system design.  相似文献   

18.
Sea otter (Enhydra lutris kenyoni) foraging behavior and prey preference were studied from June to August 2001–2004 in Simpson Bay, Prince William Sound, Alaska. The study area has an average water depth of 30 m and a benthos primarily of soft- and mixed-sediment with no canopy-forming kelps. A total of 1816 foraging dives from 211 bouts were recorded. Overall, dives ranged in depth from <5 to 82 m; most dives were less than 15 m (40%) with smaller, secondary peaks at 25–30 m (10%) and 50–55 m (7%). Average dive depth and duration were 27 m ± 19.5 and 1.89 min ± 0.88, respectively. Dive durations were all significantly different: male > unknown > female. Dive depths reflected the bathymetry (percentage of the bay within a depth range) of Simpson Bay but favored shallow areas. 87% of foraging dives were successful, and 44% of the prey was positively identified: 75% clams, 9% Pacific blue mussels, 6% crabs, 2% Reddish scallops and a variety of other invertebrates. There was no evidence for prey specialization among the sexes. Although sea otters in Simpson Bay rely heavily on bivalves, their diet has remained unchanged for the past 18 years, and the minimum summer population has been constant for at least the past nine years. It appears that bivalves are the predominant and stable component of the diet, and their productivity is sufficient to sustain a stable population of sea otters with a minimum peak summer density of 4.3 adult otters km?2 and an average annual density of ca. 2.9 adult otters km?2 for the past nine years and probably longer.  相似文献   

19.
The purpose of this study was to demonstrate the feasibility of the rehabilitation of abandoned aggregate quarries to calcareous wetlands through a growth experiment at the quarry floor. We tested the effects of planting substrate (fine screenings, coarse rock, transplanted peatball, and topsoil addition to screenings) and springtime water depth (+15, 0, and ?15 cm relative to ground surface) on the growth of Carex aquatilis over 3 years. Survival rate of the transplanted material was 100%. Minimal growth was observed after the first growing season, but by the end of the third growing season the transplanted material had added on average 80, 4, and 3 shoots in the topsoil-amended, intact peatball, and coarse rock treatments, respectively, but lost on average 4 shoots in the fine screenings treatment. The addition of topsoil significantly increased final aboveground biomass (285 ± 49 g per plot) compared to the peatball (40 ± 16 g), rock (36 ± 11 g) and screenings (35 ± 21 g) treatments, which were not significantly different. The effect of water depth did not lead to overall significant differences, as Carex aquatilis ramets were capable of growing in springtime water levels from 15 cm above to 15 cm below ground surface. Our data demonstrate that some flooded abandoned aggregate quarry floors represent suitable sites for conversion to calcareous wetlands, even with a strategy of minimum maintenance, and that wetland species are capable of growth in these largely inorganic settings.  相似文献   

20.
A new phytoplankton-based index was designed to respond to the Water Framework Directive (WFD) requirements concerning the assessment of lake ecological status. The “Indice Phytoplancton Lacustre” (IPLAC) is a multimetric index, taking into account biomass, abundance and species composition of communities. The first metric is based on the total phytoplankton biomass (MBA), the second on the abundance and taxonomic composition (MCS) of 165 indicator taxa. The IPLAC was developed on 2 independent databases, one for the calibration and the second for the validation of the metrics. The calibration dataset was composed of 255 “lake-years” from 214 distinct lakes sampled between 2005 and 2012. The validation dataset included 173 lake-years in order to confirm the response of the index to the trophic gradient and anthropogenic pressure.The results show that the IPLAC correctly highlights chemical pressure (eutrophication). Especially high Pearson correlations are shown with total phosphorus (r = −0.71, p-value <0.001), chlorophyll-a (r = −0.83, p-value <0.001) and water transparency (r = 0.73, p-value <0.001) which are the main proxies for the trophic level. Corine land cover was used as an indication of the anthropogenic pressure and good correlations are also found with the watershed land use, negatively correlated with agricultural area (r = −0.60, p-value <0.001), population density (r = −0.36, p-value <0.001) and positively with forest area (r = 0.57, p-value <0.001).The index is WFD-compliant and is dedicated to natural lakes and artificial water bodies in metropolitan France, and will be routinely used by the French Ministry of the Environment to assess lake ecological status through the phytoplankton community. However, the results must be carefully interpreted in two cases: reservoirs with large water level fluctuations, and samples that include less than 5 indicator species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号