首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.  相似文献   

2.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

3.
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.  相似文献   

4.
Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.  相似文献   

5.
The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened for genes in Schizosaccharomyces pombe that, when overexpressed, result in precocious mitotic entry in the presence of DNA damage. We show that overexpression of the type I protein phosphatase Dis2 sensitises S. pombe cells to DNA damage, causing aberrant mitoses. Dis2 abrogates Chk1 phosphorylation and activation in vivo, and dephosphorylates Chk1 and a phospho-S345 Chk1 peptide in vitro. dis2Delta cells have a prolonged chk1-dependent arrest and a compromised ability to downregulate Chk1 activity for checkpoint release. These effects are specific for the DNA damage checkpoint, because Dis2 has no effect on the chk1-independent response to stalled replication forks. We propose that inactivation of Chk1 by Dis2 allows mitotic entry following repair of DNA damage in the G2-phase.  相似文献   

6.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

7.
Sun H  Hou H  Lu P  Zhang L  Zhao F  Ge C  Wang T  Yao M  Li J 《PloS one》2012,7(5):e36808
The treatment of human hepatocellular carcinoma (HCC) cell lines with (+)-isocorydine, which was isolated and purified from Papaveraceae sp. plants, resulted in a growth inhibitory effect caused by the induction of G2/M phase cell cycle arrest and apoptosis. We report that isocorydine induces G2/M phase arrest by increasing cyclin B1 and p-CDK1 expression levels, which was caused by decreasing the expression and inhibiting the activation of Cdc25C. The phosphorylation levels of Chk1 and Chk2 were increased after ICD treatment. Furthermore, G2/M arrest induced by ICD can be disrupted by Chk1 siRNA but not by Chk2 siRNA. In addition, isocorydine treatment led to a decrease in the percentage of CD133(+) PLC/PRF/5 cells. Interestingly, isocorydine treatment dramatically decreased the tumorigenicity of SMMC-7721 and Huh7 cells. These findings indicate that isocorydine might be a potential therapeutic drug for the chemotherapeutic treatment of HCC.  相似文献   

8.
Wang Y  Liu Q  Liu Z  Li B  Sun Z  Zhou H  Zhang X  Gong Y  Shao C 《Mutation research》2012,734(1-2):20-29
Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50μM) for 24h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.  相似文献   

9.
Chk2 is a well characterized protein kinase with key roles in the DNA damage response. Chk2 is activated by phosphorylation following DNA damage, and relays that signal to various substrate proteins to induce cell cycle arrest, DNA repair, and apoptosis. In order to identify novel components of the Chk2 signaling pathway in Drosophila, we screened 2,240 EP misexpression lines for dominant modifiers of an adult rough eye phenotype caused by Chk2 overexpression in postmitotic cells of the eye imaginal disc. The rough eye phenotype was suppressed by mutation of the ATM kinase, a well-described activator of Chk2. Twenty-five EP modifiers were identified (three enhancers and 22 suppressors), none of which correspond to previously known components of Chk2 signaling. Three EPs caused defects in G2 arrest after irradiation with incomplete penetrance when homozygous, and are likely directly involved in the response to DNA damage. Possible roles for these modifiers in the DNA damage response and Chk2 signaling are discussed.  相似文献   

10.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

11.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

12.
Chk1 kinase, a DNA damage/replication G2 checkpoint kinase, has recently been shown to phosphorylate and inhibit Cdc25C, a Cdc2 Tyr-15 phosphatase, thereby directly linking the G2 checkpoint to negative regulation of Cdc2. Immature Xenopus oocytes are arrested naturally at the first meiotic prophase (prophase I) or the late G2 phase, with sustained Cdc2 Tyr-15 phosphorylation. Here we have cloned a Xenopus homolog of Chk1, determined its developmental expression, and examined its possible role in prophase I arrest of oocytes. Xenopus Chk1 protein is expressed at approximately constant levels throughout oocyte maturation and early embryogenesis. Overexpression of wild-type Chk1 in oocytes prevents the release from prophase I arrest by progesterone. Conversely, specific inhibition of endogenous Chk1 either by overexpression of a dominant-negative Chk1 mutant or by injection of a neutralizing anti-Chk1 antibody facilitates prophase I release by progesterone. Moreover, when ectopically expressed in oocytes, a Chk1-nonphosphorylatable Cdc25C mutant alone can induce prophase I release much more efficiently than wild-type Cdc25C; if endogenous Chk1 function is inhibited, however, even wild-type Cdc25C can induce the release very efficiently. These results suggest strongly that Chk1 is involved in physiological prophase I arrest of Xenopus oocytes via the direct phosphorylation and inhibition of Cdc25C. We discuss the possibility that Chk1 might function either as a G2 checkpoint kinase or as an ordinary cell cycle regulator in prophase-I-arrested oocytes.  相似文献   

13.
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.  相似文献   

14.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G2 arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest. Additionally our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.  相似文献   

15.
Chk1 phosphorylation by the PI3-like kinases ATR and ATM is critical for its activation and its role in prevention of premature mitotic entry in response to DNA damage or stalled replication. The breast and ovarian tumor suppressor, BRCA1, is among several checkpoint mediators that are required for Chk1 activation by ATM and ATR. Previously we showed that BRCA1 is necessary for Chk1 phosphorylation and activation following ionizing radiation. BRCA1 has been implicated in S-phase checkpoint control yet its mechanism of action is not well characterized. Here we report that BRCA1 is critical for Chk1 phosphorylation in response to inhibition of replication by either cisplatin or hydroxyurea. While Chk1 phosphorylation of S317 is fully dependent on BRCA1, additional proteins may mediate S345 phosphorylation at later time points. In addition, we show that a subset of phosphorylated Chk1 is released from the chromatin in a BRCA1-dependent manner which may lead to the phosphorylation of Chk1 substrate, Cdc25C, on S216 and to S-phase checkpoint activation. Inhibition of Chk1 kinase by UCN-01 or expression of Chk1 phosphorylation mutants in which the serine residues were substituted with alanine residues abrogates BRCA1-dependent cell cycle arrest in response replication inhibition. These data reveal that BRCA1 facilitates Chk1 phosphorylation and its partial chromatin dissociation following replication inhibition that is likely to be required for S-phase checkpoint signaling.  相似文献   

16.
Due to the abnormal vasculature of solid tumors, tumor cell oxygenation can change rapidly with the opening and closing of blood vessels, leading to the activation of both hypoxic response pathways and oxidative stress pathways upon reoxygenation. Here, we report that ataxia telangiectasia mutated-dependent phosphorylation and activation of Chk2 occur in the absence of DNA damage during hypoxia and are maintained during reoxygenation in response to DNA damage. Our studies involving oxidative damage show that Chk2 is required for G2 arrest. Following exposure to both hypoxia and reoxygenation, Chk2-/- cells exhibit an attenuated G2 arrest, increased apoptosis, reduced clonogenic survival, and deficient phosphorylation of downstream targets. These studies indicate that the combination of hypoxia and reoxygenation results in a G2 checkpoint response that is dependent on the tumor suppressor Chk2 and that this checkpoint response is essential for tumor cell adaptation to changes that result from the cycling nature of hypoxia and reoxygenation found in solid tumors.  相似文献   

17.
The checkpoint kinase Chk1 is an established transducer of ATR- and ATM-dependent signalling in response to DNA damage. In addition to its nuclear localization, Chk1 localizes to interphase centrosomes and thereby negatively regulates entry into mitosis by preventing premature activation of cyclin B-Cdk1 during unperturbed cell cycles. Here, we demonstrate that DNA damage caused by ultraviolet irradiation or hydroxyurea treatment leads to centrosomal accumulation of endogenous Chk1 in normal human BJ fibroblasts and in ATR- or ATM-deficient fibroblasts. Chemical inhibition of ATR/ATM by caffeine led to enhanced centrosomal Chk1 deposition associated with nuclear Chk1 depletion. In contrast to normal or ATM-deficient fibroblasts, genetically ATR-deficient Seckel-fibroblasts showed detectable constitutive centrosomal accumulation of Chk1 even in the absence of exogenous insults. After DNA damage, the centrosomal fraction of Chk1 was found to be phosphorylated at ATR/ATM phosphorylation sites. Forced immobilization of kinase-inactive but not wild-type Chk1 to centrosomes resulted in a G2/M checkpoint defect. Finally, both DNA damage, and forced centrosomal expression of Chk1 in the absence of genotoxic treatments, induced centrosome amplification in a subset of cells, a phenomenon which could be suppressed by inhibition of ATM/ATR-mediated signaling. Taken together, our results suggest that accumulation of phosphorylated Chk1 at centrosomes constitutes an additional element in the DNA damage response. Centrosomal Chk1 induces G2/M cell cycle arrest and may evoke centrosome amplification, the latter possibly providing a backup mechanism for elimination of cells with impaired DNA damage checkpoints operating earlier during the cell cycle.  相似文献   

18.
In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.  相似文献   

19.
R Niu  M Yoshida  F Ling 《PloS one》2012,7(7):e40572
Activation of the Mec1/Rad53 damage checkpoint pathway influences mitochondrial DNA (mtDNA) content and point mutagenesis in Saccharomyces cerevisiae. The effects of this conserved checkpoint pathway on mitochondrial genomes in human cells remain largely unknown. Here, we report that knockdown of the human DNA helicase RRM3 enhances phosphorylation of the cell cycle arrest kinase Chk2, indicating activation of the checkpoint via the ATM/Chk2 pathway, and increases mtDNA content independently of TFAM, a regulator of mtDNA copy number. Cell-cycle arrest did not have a consistent effect on mtDNA level: knockdown of cell cycle regulators PLK1 (polo-like kinase), MCM2, or MCM3 gave rise, respectively, to decreased, increased, or almost unchanged mtDNA levels. Therefore, we concluded that the mtDNA content increase upon RRM3 knockdown is not a response to delay of cell cycle progression. Also, we observed that RRM3 knockdown increased the levels of reactive oxygen species (ROS); two ROS scavengers, N-acetyl cysteine and vitamin C, suppressed the mtDNA content increase. On the other hand, in RRM3 knockdown cells, we detected an increase in the frequency of the common 4977-bp mtDNA deletion, a major mtDNA deletion that can be induced by abnormal ROS generation, and is associated with a decline in mitochondrial genome integrity, aging, and various mtDNA-related disorders in humans. These results suggest that increase of the mitochondrial genome by TFAM-independent mtDNA replication is connected, via oxidative stress, with the ATM/Chk2 checkpoint activation in response to DNA damage, and is accompanied by generation of the common 4977-bp deletion.  相似文献   

20.
Infected cells recognize viral replication as a DNA damage stress and elicit a DNA damage response that ultimately induces apoptosis as part of host immune surveillance. Here, we demonstrate a novel mechanism where the murine gamma herpesvirus 68 (gammaHV68) latency-associated, anti-interferon M2 protein inhibits DNA damage-induced apoptosis by interacting with the DDB1/COP9/cullin repair complex and the ATM DNA damage signal transducer. M2 expression constitutively induced DDB1 nuclear localization and ATM kinase activation in the absence of DNA damage. Activated ATM subsequently induced Chk activation and p53 phosphorylation and stabilization without eliciting H2AX phosphorylation and MRN recruitment to foci upon DNA damage. Consequently, M2 expression inhibited DNA repair, rendered cells resistant to DNA damage-induced apoptosis, and induced a G(1) cell cycle arrest. Our results suggest that gammaHV68 M2 blocks apoptosis-mediated intracellular innate immunity, which might ultimately contribute to its role in latent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号