共查询到20条相似文献,搜索用时 0 毫秒
1.
Kelly M. Clapp Hwei-Ming Peng Gary J. Jenkins Michael J. Ford Yoshihiro Morishima Miranda Lau Yoichi Osawa 《The Journal of biological chemistry》2012,287(51):42601-42610
Nitric-oxide synthase, a cytochrome P450-like hemoprotein enzyme, catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of physiological processes. Our laboratory has discovered that certain drugs suicide-inactivate neuronal nitric-oxide synthase (nNOS) and lead to the preferential ubiquitination of the inactivated nNOS by an Hsp70- and CHIP (C terminus of Hsc70-interacting protein)-dependent process. To further understand the process by which altered nNOS is recognized, ubiquitinated, and proteasomally degraded, we examined the sites of ubiquitination on nNOS. We utilized an in vitro ubiquitination system containing purified E1, E2 (UbcH5a), Hsp70, and CHIP that recapitulates the ability of the cells to selectively recognize and ubiquitinate the altered forms of nNOS. LC-MS/MS analysis of the tryptic peptides obtained from the in vitro ubiquitinated nNOS identified 12 ubiquitination sites. Nine of the sites were within the oxygenase domain and two were in the calmodulin-binding site, which links the oxygenase and reductase domains, and one site was in the reductase domain. Mutational analysis of the lysines in the calmodulin-binding site revealed that Lys-739 is a major site for poly-ubiquitination of nNOS in vitro and regulates, in large part, the CHIP-dependent degradation of nNOS in HEK293 cells, as well as in in vitro studies with fraction II. Elucidating the exact site of ubiquitination is an important step in understanding how chaperones recognize and trigger degradation of nNOS. 相似文献
2.
Fredrick Onono Thangaiah Subramanian Manjula Sunkara Karunai Leela Subramanian H. Peter Spielmann Andrew J. Morris 《The Journal of biological chemistry》2013,288(38):27444-27455
Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized stable isotope-labeled tracers to quantitate incorporation of exogenously provided farnesol, geranylgeraniol, and unnatural analogs of these isoprenols containing an aniline group into isoprenoid diphosphates and protein isoprenylcysteines by cultured human cancer cell lines. We found that at exogenous isoprenol concentrations >10 μm, this process can generate as much as 50% of the cellular isoprenoid diphosphate pool used for protein isoprenylation. Mutational activation of p53 in MDA-MB-231 breast cancer cells up-regulates the mevalonate pathway to promote tumor invasiveness. p53 silencing or pharmacological inhibition of HMG-CoA reductase in these cells decreases protein isoprenylation from endogenously synthesized isoprenoids but enhances the use of exogenous isoprenols for this purpose, indicating that this latter process is regulated independently of the mevalonate pathway. Our observations suggest unique opportunities for design of cancer cell-directed therapies and may provide insights into mechanisms underlying pleiotropic therapeutic benefits and unwanted side effects of mevalonate pathway inhibition. 相似文献
3.
Ingvild Aukrust Lise Bj?rkhaug Maria Negahdar Janne Molnes Bente B. Johansson Yvonne Müller Wilhelm Haas Steven P. Gygi Oddmund S?vik Torgeir Flatmark Rohit N. Kulkarni P?l R. Nj?lstad 《The Journal of biological chemistry》2013,288(8):5951-5962
Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells. 相似文献
4.
Davide Vigetti Sara Deleonibus Paola Moretto Eugenia Karousou Manuela Viola Barbara Bartolini Vincent C. Hascall Markku Tammi Giancarlo De Luca Alberto Passi 《The Journal of biological chemistry》2012,287(42):35544-35555
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. 相似文献
5.
MTMR2 is a member of the myotubularin family of inositol lipid phosphatases, a large protein-tyrosine phosphatase subgroup that is conserved from yeast to humans. Furthermore, the peripheral neuromuscular disease Charcot-Marie Tooth disease type 4B has been attributed to mutations in the mtmr2 gene. Because the molecular mechanisms regulating MTMR2 have been poorly defined, we investigated whether reversible phosphorylation might regulate MTMR2 function. We used mass spectrometry-based methods to identify a high stoichiometry phosphorylation site on serine 58 of MTMR2. Phosphorylation at Ser(58), or a phosphomimetic S58E mutation, markedly decreased MTMR2 localization to endocytic vesicular structures. In contrast, a phosphorylation-deficient MTMR2 mutant (S58A) displayed constitutive localization to early endocytic structures. This localization pattern was accompanied by displacement of a PI(3)P-specific sensor protein and an increase in signal transduction pathways. Thus, MTMR2 phosphorylation is likely to be a critical mechanism by which MTMR2 access to its lipid substrate(s) is temporally and spatially regulated, thereby contributing to the control of downstream endosome maturation events. 相似文献
6.
Natalia S. Baranova Antonio Inforzato David C. Briggs Viranga Tilakaratna Jan J. Enghild Dhruv Thakar Caroline M. Milner Anthony J. Day Ralf P. Richter 《The Journal of biological chemistry》2014,289(44):30481-30498
Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking. 相似文献
7.
Wilderman PR Shah MB Liu T Li S Hsu S Roberts AG Goodlett DR Zhang Q Woods VL Stout CD Halpert JR 《The Journal of biological chemistry》2010,285(49):38602-38611
Crystal structures of the xenobiotic metabolizing cytochrome P450 2B4 have demonstrated markedly different conformations in the presence of imidazole inhibitors or in the absence of ligand. However, knowledge of the plasticity of the enzyme in solution has remained scant. Thus, hydrogen-deuterium exchange mass spectrometry (DXMS) was utilized to probe the conformations of ligand-free P450 2B4 and the complex with 4-(4-chlorophenyl)imidazole (4-CPI) or 1-biphenyl-4-methyl-1H-imidazole (1-PBI). The results of DXMS indicate that the binding of 4-CPI slowed the hydrogen-deuterium exchange rate over the B'- and C-helices and portions of the F-G-helix cassette compared with P450 2B4 in the absence of ligands. In contrast, there was little difference between the ligand-free and 1-PBI-bound exchange sets. In addition, DXMS suggests that the ligand-free P450 2B4 is predominantly open in solution. Interestingly, a new high resolution structure of ligand-free P450 2B4 was obtained in a closed conformation very similar to the 4-CPI complex. Molecular dynamics simulations performed with the closed ligand-free structure as the starting point were used to probe the energetically accessible conformations of P450 2B4. The simulations were found to equilibrate to a conformation resembling the 1-PBI-bound P450 2B4 crystal structure. The results indicate that conformational changes observed in available crystal structures of the promiscuous xenobiotic metabolizing cytochrome P450 2B4 are consistent with its solution structural behavior. 相似文献
8.
Xin Guo Michael D. Ward Jessica B. Tiedebohl Yvonne M. Oden Julius O. Nyalwidhe O. John Semmes 《The Journal of biological chemistry》2010,285(43):33348-33357
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2. 相似文献
9.
Diana Resetca Sina Haftchenary Patrick T. Gunning Derek J. Wilson 《The Journal of biological chemistry》2014,289(47):32538-32547
10.
Axin is a negative regulator of Wnt/β-catenin signaling via regulating the level of β-catenin, which is a key effector molecule. Therefore, controlling the level of Axin is a critical step for the regulation of Wnt/β-catenin signaling. It has been shown that ubiquitination-mediated proteasomal degradation may play a critical role in the regulation of Axin; however, the E3 ubiquitin ligase(s), which attaches ubiquitin to a target protein in combination with an E2 ubiquitin-conjugating enzyme, for Axin has not yet been identified. Here, we show that Smurf2 is an E3 ubiquitin ligase for Axin. Transient expression of Smurf2 down-regulated the level of Axin and increased the ubiquitination of Axin. Conversely, shRNA specific to Smurf2 blocked Axin ubiquitination. Essential domains of Axin responsible for Smurf2 interaction as well as Smurf2-mediated down-regulation and ubiquitination were identified. In vitro ubiquitination assays followed by analysis using mass spectroscopy revealed that Smurf2 specifically ubiquitinylated Lys505 of Axin and that the Axin(K505R) mutant resisted degradation. Knockdown of endogenous Smurf2 increased the level of endogenous Axin and resulted in reduced β-catenin/Tcf reporter activity. Overall, our data strongly suggest that Smurf2 is a genuine E3 ligase for Axin. 相似文献
11.
Chandran S Li H Dong W Krasinska K Adams C Alexandrova L Chien A Hallows KR Bhalla V 《The Journal of biological chemistry》2011,286(43):37830-37840
Regulation of epithelial Na(+) channel (ENaC)-mediated transport in the distal nephron is a critical determinant of blood pressure in humans. Aldosterone via serum and glucocorticoid kinase 1 (SGK1) stimulates ENaC by phosphorylation of the E3 ubiquitin ligase Nedd4-2, which induces interaction with 14-3-3 proteins. However, the mechanisms of SGK1- and 14-3-3-mediated regulation of Nedd4-2 are unclear. There are three canonical SGK1 target sites on Nedd4-2 that overlap phosphorylation-dependent 14-3-3 interaction motifs. Two of these are termed "minor," and one is termed "major," based on weak or strong binding to 14-3-3 proteins, respectively. By mass spectrometry, we found that aldosterone significantly stimulates phosphorylation of a minor, relative to the major, 14-3-3 binding site on Nedd4-2. Phosphorylation-deficient minor site Nedd4-2 mutants bound less 14-3-3 than did wild-type (WT) Nedd4-2, and minor site Nedd4-2 mutations were sufficient to inhibit SGK1 stimulation of ENaC cell surface expression. As measured by pulse-chase and cycloheximide chase assays, a major binding site Nedd4-2 mutant had a shorter cellular half-life than WT Nedd4-2, but this property was not dependent on binding to 14-3-3. Additionally, a dimerization-deficient 14-3-3ε mutant failed to bind Nedd4-2. We conclude that whereas phosphorylation at the Nedd4-2 major site is important for interaction with 14-3-3 dimers, minor site phosphorylation by SGK1 may be the relevant molecular switch that stabilizes Nedd4-2 interaction with 14-3-3 and thus promotes ENaC cell surface expression. We also propose that major site phosphorylation promotes cellular Nedd4-2 protein stability, which potentially represents a novel form of regulation for turnover of E3 ubiquitin ligases. 相似文献
12.
Emil Bulatov Esther M. Martin Sneha Chatterjee Axel Knebel Satoko Shimamura Albert Konijnenberg Clare Johnson Nico Zinn Paola Grandi Frank Sobott Alessio Ciulli 《The Journal of biological chemistry》2015,290(7):4178-4191
The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5SOCS2), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5SOCS2 can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5SOCS2 complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5SOCS2 was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5SOCS2 complexes is supported by traveling wave ion mobility mass spectrometry data. 相似文献
13.
Naimy H Buczek-Thomas JA Nugent MA Leymarie N Zaia J 《The Journal of biological chemistry》2011,286(22):19311-19319
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains. 相似文献
14.
Zixuan Li Heather Moniz Shuo Wang Annapoorani Ramiah Fuming Zhang Kelley W. Moremen Robert J. Linhardt Joshua S. Sharp 《The Journal of biological chemistry》2015,290(17):10729-10740
Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. 相似文献
15.
Bloem E Meems H van den Biggelaar M van der Zwaan C Mertens K Meijer AB 《The Journal of biological chemistry》2012,287(8):5775-5783
The A2 domain rapidly dissociates from activated factor VIII (FVIIIa) resulting in a dampening of the activity of the activated factor X-generating complex. The amino acid residues that affect A2 domain dissociation are therefore critical for FVIII cofactor function. We have now employed chemical footprinting in conjunction with mass spectrometry to identify lysine residues that contribute to the stability of activated FVIII. We hypothesized that lysine residues, which are buried in FVIII and surface-exposed in dissociated activated FVIII (dis-FVIIIa), may contribute to interdomain interactions. Mass spectrometry analysis revealed that residues Lys(1967) and Lys(1968) of region Thr(1964)-Tyr(1971) are buried in FVIII and exposed to the surface in dis-FVIIIa. This result, combined with the observation that the FVIII variant K1967I is associated with hemophilia A, suggests that these residues contribute to the stability of activated FVIII. Kinetic analysis revealed that the FVIII variants K1967A and K1967I exhibit an almost normal cofactor activity. However, these variants also showed an increased loss in cofactor activity over time compared with that of FVIII WT. Remarkably, the cofactor activity of a K1968A variant was enhanced and sustained for a prolonged time relative to that of FVIII WT. Surface plasmon resonance analysis demonstrated that A2 domain dissociation from activated FVIII was reduced for K1968A and enhanced for K1967A. In conclusion, mass spectrometry analysis combined with site-directed mutagenesis studies revealed that the lysine couple Lys(1967)-Lys(1968) within region Thr(1964)-Tyr(1971) has an opposite contribution to the stability of FVIIIa. 相似文献
16.
Amila Abeykoon Guanghui Wang Chien-Chung Chao P. Boon Chock Marjan Gucek Wei-Mei Ching David C. H. Yang 《The Journal of biological chemistry》2014,289(11):7691-7701
Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence. 相似文献
17.
David Y Ternette N Edelmann MJ Ziv T Gayer B Sertchook R Dadon Y Kessler BM Navon A 《The Journal of biological chemistry》2011,286(51):44104-44115
Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification. 相似文献
18.
We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed. 相似文献
19.
Saori Kunii Koichi Morimoto Kouhei Nagai Takuya Saito Kenji Sato Ben'ichiro Tonomura 《The Journal of biological chemistry》2010,285(23):17465-17470
We investigated the ability of type I collagen telopeptides to bind neighboring collagen molecules, which is thought to be the initial event in fibrillogenesis. Limited hydrolysis by actinidain protease produced monomeric collagen, which consisted almost entirely of α1 and α2 chains. As seen with ultrahigh resolution scanning electron microscopy, actinidain-hydrolyzed collagen exhibited unique self-assembly, as if at an intermediate stage, and formed a novel suprastructure characterized by poor fibrillogenesis. Then, the N- and C-terminal sequences of chicken type I collagen hydrolyzed by actinidain or pepsin were determined by Edman degradation and de novo sequence analysis with matrix-assisted laser desorption ionization-tandem time-of-flight mass spectrometry, respectively. In the C-telopeptide region of the α1 chain, pepsin cleaved between Asp1035 and Phe1036, and actinidain between Gly1032 and Gly1033. Thus, the actinidain-hydrolyzed α1 chain is shorter at the C terminus by three residues, Gly1033, Phe1034, and Asp1035. In the α2 chain, both proteases cleaved between Glu1030 and Val1031. We demonstrated that a synthetic nonapeptide mimicking the α1 C-terminal sequence including GFD weakly inhibited the self-assembly of pepsin-hydrolyzed collagen, whereas it remarkably accelerated that of actinidain-hydrolyzed collagen. We conclude that the specific GFD sequence of the C-telopeptide of the α1 chain plays a crucial role in stipulating collagen suprastructure and in subsequent fibril formation. 相似文献
20.
Christian Viskov Stefano Elli Elena Urso Davide Gaudesi Pierre Mourier Frederic Herman Christian Boudier Benito Casu Giangiacomo Torri Marco Guerrini 《The Journal of biological chemistry》2013,288(36):25895-25907
The antithrombin (AT) binding properties of heparin and low molecular weight heparins are strongly associated to the presence of the pentasaccharide sequence AGA*IA (ANAc,6S-GlcUA-ANS,3,6S-I2S-ANS,6S). By using the highly chemoselective depolymerization to prepare new ultra low molecular weight heparin and coupling it with the original separation techniques, it was possible to isolate a polysaccharide with a biosynthetically unexpected structure and excellent antithrombotic properties. It consisted of a dodecasaccharide containing an unsaturated uronate unit at the nonreducing end and two contiguous AT-binding sequences separated by a nonsulfated iduronate residue. This novel oligosaccharide was characterized by NMR spectroscopy, and its binding with AT was determined by fluorescence titration, NMR, and LC-MS. The dodecasaccharide displayed a significantly increased anti-FXa activity compared with those of the pentasaccharide, fondaparinux, and low molecular weight heparin enoxaparin. 相似文献