首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Dendroclimatology generally assumes that climate–growth relationships are age and size independent. However, there is evidence that climate response can be unstable across different age/size classes. In addition, the occurrence of some anatomical features, such as intra-annual density fluctuations (IADFs), is age dependent. The present study investigates whether the climate–growth responses and the occurrence of IADFs in an even-aged stand of Pinus pinaster Ait., growing under Mediterranean climate, are also size-dependent. We randomly selected 60 P. pinaster trees falling within two stem diameter classes: small (<27 cm) and large (>35 cm). Tree rings were crossdated, measured and IADFs identified according to their position within the ring. The residual chronologies of both size classes were strongly correlated, suggesting a common signal. In fact, similar growth–climate relationships were observed in large and small trees. The frequency of IADFs was higher in large than in small trees, suggesting that IADFs were more likely to occur in wider rings of fast-growing trees. In both size classes, most of the IADFs were found in latewood. Latewood IADFs were triggered by the combination of dry June, wet September, and warm December, whereas IADFs located at the end of earlywood were triggered by previous winter precipitation and favorable conditions before summer (high precipitation for large trees and lower temperature for small trees). Our results suggest that IADFs can be a mechanism used at the individual level for adaptation to drought in P. pinaster. The climatic signal of IADFs between earlywood and latewood was mediated by stem size suggesting that future tree-ring studies should include trees stratified by size to better estimate the sensitivity of IADFs to climate.  相似文献   

2.
Dendrochronology generally assumes that climate–growth relationships are age independent once the biological growth trend has been removed. However, tree physiology, namely, photosynthetic capacity and hydraulic conductivity changes with age. We tested whether the radial-growth response to climate and the intra-annual density fluctuations (IADFs) of Pinus pinaster Ait. varied with age. Trees were sampled in Pinhal de Leiria (Portugal), and were divided in two age classes: young (<65 years old) and old (>115 years old). Earlywood and tree-ring width of young P. pinaster trees were more sensitive to climate influence while the response of latewood width to climate was stronger in old trees. Young trees start the growing season earlier, thus a time window delay occurs between young and old trees during which wood cells of young trees integrate environmental signals. Young trees usually have a longer growing season and respond faster to climate conditions, thus young P. pinaster trees presented a higher frequency of IADFs compared with old trees. Most of the IADFs were located in latewood and were positively correlated to autumn precipitation. The radial-growth response of P. pinaster to climate and the IADFs frequency were age dependent. The use of trees with different age to create a tree-ring chronology for climate studies can increase the resolution of climatic signals. Age-dependent responses to climate can also give important clues to predict how young and old trees react to climate change.  相似文献   

3.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

4.
Climate change affects forest dynamics with potential consequences for essential ecosystem services. The retrospective analysis of secondary growth unveils the effect of climate on forests. However, most tree-ring studies focus on dominant trees, and less is known about the climatic response of their neighbor suppressed trees. We evaluated the influence of tree social status (dominant/suppressed) on climate response in Pinus sylvestris L. trees from two sites with contrasting water availability conditions in the forest-steppe ecotone in southern Siberia. Tree-ring width and intra-annual density fluctuations (IADFs) were used as proxies. Late spring to early summer conditions were the main climate drivers in both tree social status, but the climate response of suppressed trees was stronger and had a longer time window (May-June). IADFs’ occurrence was controlled by temperature and its frequency was modulated by local conditions, being more common at the dry site, with tree status just marginally significant. Our results suggest that under the projected warmer and drier climate, suppressed trees in southern Siberia will be prone to increased water shortage, leading to possible higher mortality of more sensitive suppressed trees, with potential consequences for carbon sequestration in the forest-steppe ecosystems in southern Siberia.  相似文献   

5.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

6.
The effects of drought on radial growth of Pinussylvestris were investigated by comparing sites along hydricgradients. The gradients were located in Valais, an inner Alpine dry valley inSwitzerland, with each consisting of two site types, an extreme dry, xeric siteand a less dry, moderate site. The two site types were assigned tophytosociological associations within the Erico-Pinion. The investigationcovered the responses of tree growth to climate and particularly concentratedonintra-annual features of tree-rings such as earlywood/latewood ratio,intra-annual density fluctuations (IADFs) and traumatic tissues (TTs) as wellasthe sapwood/heartwood ratio. Radial growth differed according to the sitetypes,with trees on dry sites generally showing more missing rings, lower mean ringwidths, lower autocorrelation, higher mean sensitivities, reduced latewoodproportions and lower sapwood areas than trees on moderate sites. Therelationships between climate and tree-ring width, studied using responsefunction analysis, varied strongly between the site types within theErico-Pinion: Tree growth on dry sites was positively influenced byprecipitation at the end of the winter and the beginning of the growing seasonand negatively influenced by temperature in June. Winter precipitation waspositively correlated with radial growth, demonstrating its importance for thesuccessful root and shoot growth of the plants in spring on dry sites. Onmoderate sites, tree growth was less controlled by climate than by priorgrowth.The intra-annual density fluctuations (IADFs) provided a valuable means todifferentiate between the site types. In comparison to the moderate sites, thetrees on dry sites contained more IADFs, and their frequency was increased.Moist-cool conditions in the middle of the growing season were the triggeringfactor for IADFs on dry sites, whereas on moderate sites, there must be anadditional warm period in early summer in order to initiate IADFs. Most IADFswere found in latewood. We found no relationship between climate and traumatictissues (TTs). It is unclear whether other abiotic or biotic factors such aswounding by insects or birds are responsible for the development of TTs. Theassignment of these differences in tree growth behaviour to phytosociologicalassociations will enable a deeper understanding of the site types and willfacilitate the comparison with similar studies. Furthermore, the results can becombined with studies from other scientific disciplines concerning thesephytosociological associations. The ecological indicator values of thevegetation was a precise method for the distinction of site types.  相似文献   

7.
Dendroprovenancing studies frequently use site chronologies to identify the origin of archaeological and historical timber. However, radial growth (tree-ring width, TRW) of tree species is influenced by both local and regional climate scales. Here we investigate how the use of annually-resolved Blue Intensity (BI) measurements can enhance dendroprovenancing precision of black pine (Pinus nigra Arn.) and Scots pine (P. sylvestris L.) on the Iberian Peninsula. Principal Component Gradient Analyses (PCGA) was used to assess geographical patterns of annual variation in different TRW and BI proxies of pine trees from two mountain ranges in the Central System and Andalusia in Spain. Local climate-growth relationships were quantified to identify underlying causes of identified groups with diverse growth patterns. Two distinct elevational groups were observed when performing PCGA on latewood BI time series with the response to summer drought as the main factor causing the differences. Both P. nigra and P. sylvestris BI time series were found to be more related to summer drought at low-elevation sites showing an increase in sensitivity at lower latitudes. PCGA of TRW time series allowed to discriminate between trees from Andalusia and Central System within the elevation groups. February and October temperatures were found to be the main climatic factors causing the differences in TRW time series among the high- elevation sites, whereas for low-elevation trees it was the average winter temperature influencing TRW. A subsequent leave-one-out analyses confirmed that including latewood BI time series improves the precision of dendroprovenancing of pine wood in the Iberian Peninsula.  相似文献   

8.
Cambial activity related to tree size in a mature silver-fir plantation   总被引:1,自引:0,他引:1  

Background and Aims

Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.

Methods

Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.

Key Results

Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.

Conclusions

These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.  相似文献   

9.
川西亚高山不同年龄紫果云杉径向生长对气候因子的响应   总被引:1,自引:0,他引:1  
运用树木年轮气候学的基本方法,建立王朗自然保护区紫果云杉在集中分布上限区域的年轮宽度年表,选取差值年表分析不同年龄云杉的径向生长同逐月气候因子的相关及响应关系,结果显示:幼龄组云杉年表的敏感度高于中龄组和老龄组云杉,幼龄组云杉对生长季前及生长季的气温状况显著正相关;中龄组云杉年表仅与当年4月份和7月份的月平均最低气温显著正相关;老龄组云杉的年轮宽度指数同上年生长季(上年8月份)的月平均气温和月平均最低温显著负相关,上年生长季高温的"滞后效应"在老龄组云杉体现的更为突出;幼龄组与中龄组云杉对当年6月份降水持续增加显示出明显的负相关关系,上年12月份的降水会对幼龄组和老龄组云杉径向生长不利。研究表明幼龄组云杉包含的气候信息要优于中龄组和老龄组云杉,在该区域进行相关研究时应根据研究需要选取不同年龄跨度的云杉年表。  相似文献   

10.
Climate warming and increasing aridity have impacted diverse ecosystems in the Mediterranean region since at least the 1970s. Pinus pinea L. has significant environmental and socio-economic importance for the Iberian Peninsula, so a detailed understanding of its response to climate change is necessary to predict its status under future climatic conditions. However, variability of climate and uncertainties in dendroclimatological approach complicate the understanding of forest growth dynamics. We use an ensemble approach to analyze growth-climate responses of P. pinea trees from five sites along a latitudinal gradient in Spain over time. The growth responses to April-June precipitation totals were stronger in the north than in the south. Since the 1950s, the sensitivity of growth to April-June precipitation increased in the north and decreased in the south. Meteorological drought usually started in May in the southern sites, but in June-July in the northern sites. The water deficit in the southern sites is thus greater and more limiting for tree growth, and this likely accounts for the lower growth sensitivity during these months. Our results indicate that P. pinea has a high degree of plasticity, suggesting the species will withstand changing climatic conditions. However, growth response to drought regimes varies among P. pinea populations, suggesting that different populations have different capacities for acclimation to warmer and drier climate, and this may influence future vegetation composition.  相似文献   

11.
长白山北坡不同年龄红松年表及其对气候的响应   总被引:3,自引:0,他引:3  
王晓明  赵秀海  高露双  姜庆彪 《生态学报》2011,31(21):6378-6387
运用树木年轮气候学方法,研究了长白山北坡红松(Pinus koraiensis)不同年龄年表特征及其与气候因子间的关系,以期揭示年龄因素对年表的潜在影响。结果表明,平均年龄为63a的红松低龄年表与平均年龄为184a的高龄年表对气候的响应明显不同:低龄红松径向生长与当年1、2月月平均温度负相关(P<0.05),同时也受到上年及当年多个月份的月平均最高温度或最低温度的影响,但与降水的相关性未达到显著水平;高龄红松径向生长则与月平均温度间的关系不明显,而与当年1、2、4、6、7、9月的月平均最高温度正相关,与当年4月、9月的月平均最低温度负相关,同时受到上年5月及当年5月月总降水量的影响。因此,年龄因素对红松年表的气候响应方面存在一定影响,且高龄年表对气候响应的敏感性更高,包含有更多的气候信息。  相似文献   

12.
Pinus nigra subsp. salzmannii is found in the east and centre of the Iberian Peninsula, in the south of France and in North Africa. This subspecies occupies the westernmost position of the species’ general range. The persistence on the Iberian Peninsula of very long-lived specimens of Pinus nigra subsp. salzmannii, along with their sensitivity to climate, has drawn the attention of many researchers, but to date the importance of dendroecological studies relating to conservation of biodiversity or the genetic resources of this taxon had not been stressed. In the present paper we use dendroecological methods to analyse the relict pine forest in Navalacruz, an interesting and endangered genetic forestry resource on the northern slopes of the Gredos mountains (in Spain’s Central System Range) at the subspecies’ south-western global limit. This forest provides a prime example for demonstrating the potential application of dendroecology for studying the origin, dynamics, local variability, relationships with climate and anthropogenic disturbances of relict forest populations. We dated 93 growth sequences from 47 trees ranging from 1809 to 2006 and we have determined that interspecific competition is the most relevant factor as regards differences in the diameter growth of these trees. Moreover, we detected great variability and numerous common growth disturbances unrelated to climatic oscillations. These quasi-periodic disturbances alternate between suppression and release suggesting continuous management cycles of different intensities. Despite its high level of disturbance, the pine forest presents a certain degree of climatic sensitivity. Comparing with others Pinus nigra subsp. salzmannii populations, we denoted a temporal grading of the growth response to precipitation that is indicative of differences in the start and length of the vegetative period. Furthermore, we compiled different dendroecological and palaeobiogeographical data to demonstrate that this dense, homogeneous and relatively younger P. nigra population is of an indigenous nature. This study aims to provide data for improved management and conservation of this exceptional and highly endangered bastion of biodiversity.  相似文献   

13.
The climate conditions of the current and previous growing seasons have been shown to influence growth of coniferous trees in mineral soils sites. These dependencies may be different in peatlands where growth is generally more dependent on variations in soil water conditions. In the Nordic and Baltic countries, millions of hectares of peatlands and wetlands have been drained in order to enhance forest production. These drainage networks do not guarantee stable soil water conditions for the whole stand rotation. It is thus likely that precipitation in particular may have a different influence on annual growth in peatland to that in mineral soil sites. We studied the effect of precipitation and temperature on the inter-annual diameter growth of Scots pine (Pinus sylvestris L.) in Finland in drained peatland forests. The diameter growth data were limited to periods when growth response to drainage had levelled out. For comparison, growth data were also collected from adjacent mineral soil trees. The climate variables were monthly mean temperature and precipitation in a given location estimated from observations at the nearest weather stations by means of spatial smoothing. We used mixed linear models in describing the annual diameter growth of individual trees as a function of tree size and stand properties and expressed the residual variation as a function of climate parameters. The peatland and mineral soil growth variations showed different dependence on climate parameters. Peatland trees within 5 m of a ditch showed different climate responses compared to those located further away. Precipitation in July was negatively correlated with the diameter growth of peatland trees but there was no correlation with temperature. Growth of trees in mineral soils was positively correlated with March and April mean temperatures and May and June mean precipitation. The residual growth indices showed largely similar patterns in peatlands and mineral soil sites.  相似文献   

14.
The Azores Archipelago, located in the North Atlantic Ridge, experiences heavy rainfall and mild temperatures with weak seasonal differences due to oceanic influence. To our knowledge, there have been no dendrochronological studies in the Azores. The aim of this study is to explore the dendrochronological potential of Pinus pinaster Ait. growing in this archipelago and to determine what limiting factor is regulating tree growth. To do so, we have sampled adult maritime pine trees growing in a plantation, in the Pico island of the Azores.Tree ring boundaries were not always easily distinguished, suggesting that in some years cambial activity did not stop during winter. Despite this, it was possible to successfully crossdate the tree-ring series and to establish a tree-ring width chronology with a strong common signal. Climatic correlations revealed a positive response to spring precipitation but no temperature signal in the tree-ring width chronology. Tree-ring width was also negatively correlated with the North Atlantic Oscillation (NAO) and the sea level pressure (SLP) in May − June.Intra-annual density fluctuations (IADFs), which are anatomical features formed in response to variations in environmental conditions during the growing season, were present in 85% of the tree rings. IADFs were identified based on its position within the ring: type E+, characterized as a transition wood from early- to latewood; type L, the most frequent, characterized as earlywood-like cells within latewood; and type L+, characterized as earlywood-like cells between latewood and earlywood of the next tree ring. Each IADF type presented a unique climatic signal: type E+ was positively correlated with early summer precipitation and early spring temperature; type L was positively correlated with early autumn precipitation and temperature; and type L+ was positively correlated with late autumn precipitation.In conclusion, the tree-ring width chronology established for maritime pine growing in the Pico Island of Azores contains a clear climatic signal for spring precipitation, whereas IADFs frequency correlated better with precipitation later in the growing season. For this reason, we suggest that IADFs should be included in future dendrochronological studies in the Macaronesia Biogeographical region since they can improve the climatic signal present in tree-ring width chronologies.  相似文献   

15.
Northwestern China has experienced dramatic climate change characterized by rapid warming since the 1980s with the warming trend substantially slowing after 2000. Qinghai spruce (Picea crassifolia Kom.), a key tree species in northwest China, has been predicted to be strongly coupled with climate change. However, how the trends in biomass growth change at different canopy positions under climate change and whether climate–growth responses vary with canopy position remain unclear. A total of 222 trees were sampled by a stand-total sampling strategy in the central Qilian Mountains. Trees were assigned to four canopy positions according to height and distance from neighbors: dominant, codominant, intermediate, and suppressed. Our results indicate that trees in dominant and codominant canopy positions dominate the decreasing trend in stand-level biomass from 1980 to 2000 and the increasing trend from 2000–2013, contributing 81.3 % and 86 %, respectively, whereas trees in the intermediate and suppressed canopy positions contributed less. This result was attributed to a more sensitive response of biomass growth in trees in dominant and codominant canopy positions to climate change. From 1980 to 2000, the stronger decreasing trend in biomass growth at dominant and codominant canopy positions is mostly accounted for by increasing temperature. A more pronounced water deficit might have restricted biomass growth more than that at the intermediate and suppressed canopy positions. However, from 2000 to 2013, drought stress was relieved and summer standardized precipitation evapotranspiration index became a leading factor, which promoted the recovery in biomass at dominant and codominant canopy positions. In a word, compared with intermediate and suppressed canopy trees, those in dominant and codominant positions are less resistant to drought, but dominant and codominant canopy position's biomass can recover more when drought stress is relieved. A more robust understanding of canopy-level growth response and resilience to climate change is crucial to fully understand forest growth dynamics under fluctuating climate conditions.  相似文献   

16.
Aim The aims of this paper are to examine diversity–variability patterns for species of Aphodiinae (Coleoptera, Scarabaeoidea, Aphodiidae) on the Iberian Peninsula, and to determine the factors that influence their geographic distribution. Location Iberian Peninsula (Spain and Portugal). Methods Data from 30 studies and their bibliographies on species of Iberian Peninsula Aphodiinae were compiled. The reliability of the inventories was evaluated using parametric species richness estimators. In addition, a further 11 variables related to rarity, geographic distribution, or phylogenetic diversity were considered. Diversity variables were analysed using principal components analysis to reduce the number of dependent variables. Subsequently, the effect of differences in locality size among the 30 studies was eliminated by calculating and retaining the residuals of the curvilinear relationship of each diversity variable with the area. Generalized linear models were used to examine the relationships between diversity and 17 environmental variables. The diversity variables and their residuals were also subject to trend surface analysis in order to identify the relevance of spatially structured variables that had not been considered. The contribution of explanatory variables was determined through hierarchical variance analysis. Results Principal components analysis of biodiversity variables revealed that most of the variability could be explained using three biodiversity indexes: BI1, correlated positively with species richness, widely distributed species, frequent species, abundant species, species occurring in North Africa, Europe and the Iberian Peninsula, and phylogenetic diversity; BI2, correlated positively with numbers of infrequent and African–Iberian species; and, BI3, correlated positively with numbers of endemic, non‐abundant, European, and Iberian‐restricted species. A latitudinal disjunction emerged in BI1, with maximum scores at the north‐western and southern corners, while maximum BI2 scores were found throughout the south, and maximum BI3 scores in the north‐west. For BI1, it was climate that had the greatest influence, followed by lithology, and livestock presence. Geographic variables were the most significant for BI2, followed by climate and livestock presence. Finally, for BI3, climate variables were the most important, while geography, lithology and livestock presence had some relevance. Main conclusions The relevance of geographic variables indicates that other unaccounted‐for factors that are spatially structured could possibly explain additional variation in Aphodiinae diversity. These factors may be historic in nature, relating to the species groups, namely the Ibero‐European and the Mediterranean or Afro‐Iberian. The northern pattern could reflect the fact that the Iberian Peninsula acted as a colonization route and as a refuge during the glacial/interglacial cycles, while the southern pattern could be a consequence of the connection between the Iberian Peninsula and North Africa during the Messinian crisis, and/or a historic relationship in common, related to human activity.  相似文献   

17.
土丘陵沟壑区苹果树冠截留规律   总被引:1,自引:1,他引:0  
以陕北黄土丘陵沟壑区的盛果期山地苹果为研究对象,2008-2010年连续3年监测其树冠外大气降水、树冠穿透降水和树干径流,分析不同降水因子对树冠截留能力的影响.结果表明: 研究区苹果树干径流率为0.8%,树冠截留率为8.9%,且株间的截留量高于行间,距树干越近,截留量越高.苹果树冠在雨季截留量较大而截留率较低,旱季截留量较小但截留率较高.苹果树冠截留量随降水量、降水强度、降水历时、降水间隔的增大而增加,为幂函数或对数函数关系;截留率随降水量、降水强度、降水历时的延长而降低,随降水间隔的延长而增加,呈幂函数关系.不同降水因素中,降水量对苹果树冠截留能力的影响最大.  相似文献   

18.
《Dendrochronologia》2014,32(3):210-219
European black pine (Pinus nigra ssp. nigra Arnold) encroachment at increasing elevation has been analyzed at four treeline ecotones of the central Apennines (Italy). The study sites are located along a North-South gradient of 170 km across Marche and Abruzzo regions in Central Italy. The aims of this study were: (i) to detect possible common patterns of structural attributes of black pine regeneration at the treeline ecotone; (ii) to date the seedlings germination and (iii) to assess the climate influence on the pine upward encroachment process also using intra-annual density fluctuations (IADFs) in tree-rings. We sampled 658 encroached black pine trees above the current treeline to the mountain top. All individuals were mapped and their basal stem diameter, total height, annual height increments and other structural attributes measured. One increment core was extracted from stem base of most samples for cambial age determination and detection of intra-annual density fluctuations (IADF). At two sites we also extracted cores at DBH from forest trees to assess climate–growth relationships of black pine. We used multivariate analysis (PCA) to explore the correlation structure of the main tree attributes, regression analysis to relate radial and height increment and dendroclimatic analysis to assess the influence of climate on tree growth and IADF formation.Most black pine trees were located at high altitude and their structural attributes were similar at the four sites where the pine encroachment process started between 30 and 40 years ago featuring similar germination peaks and growth patterns. Black pine is particularly sensitive to maximum temperatures and IADF occurred in mid-late summer with highest frequency peaks between 2003 and 2004. The pine encroachment process, besides the differences of environmental features and land use histories of the four study sites, appears synchronic and spatially diffused. Consistent tree-growth dynamics and the species adaptation to a warming climate are signals envisaging a possible treeline upward shift.  相似文献   

19.
The effect of global warming on alpine forests is complex. It is crucial, therefore, to investigate the effects of climate change on the radial growth of trees at different altitudes. The tree growth–climate relationship remains poorly understood at large spatial scales in the Tianshan Mountains, China. Schrenk spruce (P. schrenkiana) is a unique tree species to this area. In this study, we collected tree-ring width and maximum density data from nine plots along an altitudinal gradient. Results showed that altitude affected both tree-ring width and maximum density. At high altitudes, tree-ring width was positively correlated with temperature in February of the current year. Tree-ring width was also positively correlated with precipitation in July of the previous year, and January and July of the current year, and negatively correlated with the monthly diurnal temperature range (DTR). At low altitudes, tree-ring width was negatively correlated with temperature in the early growing season and the growing season. Tree-ring width was positively correlated with precipitation in June and September of the previous year, and May of the current year. The tree-ring maximum density was positively correlated with temperature and the DTR of the growing season, and negatively correlated with precipitation in winter and growing season. Moving correlation analysis showed that the positive response of tree-ring width to precipitation in the growing season was enhanced over time at high altitudes. In the low-altitude trees, the negative response of tree-ring width to temperature in the growing season was reduced, while the positive response to precipitation in the growing season was enhanced. The positive response relationship between tree-ring maximum density and the temperature in July weakened over time. At low altitudes, the negative response of tree-ring maximum density to winter precipitation was strengthened, and a stable negative response to July precipitation was observed. As the climate becomes wetter and warmer in the Tianshan Mountains, our results suggest that the radial growth of trees may benefit at elevations above 2400 m a.s.l. There was no obvious elevation limit for the increase in tree-ring maximum density. These findings provide a basis for sustainable forest management under global climate change.  相似文献   

20.
Oak decline, a complex process leading to increased mortality of this species, has been observed in Europe for many years. Previous studies suggest that climate conditions, especially drought, may be one of the most important factors that trigger this phenomenon. The paper investigates the radial growth and wood anatomy features of pedunculate oak (Quercus robur) trees of various health status as well as their response to climate conditions. Wood samples including all annual increments were taken at two sites (western and central Poland, 15 trees each). Based on the crown defoliation level, three health groups (healthy, weakened and dead oaks) were distinguished. Cross-sections were prepared with sliding microtome and Cell P image analysis software was used for the measurements. Tree-ring width (TRW), earlywood vessels density (VDen) and non-weighted vessels diameter (VD) were determined and correlated with mean monthly values of temperature, precipitation, vapour pressure, and Palmer Drought Severity Index (PDSI). Radial increment and anatomical parameters were significantly higher for the healthy oaks than for the weakened and the dead trees. TRW showed smaller dependence on climate than analysed anatomical attributes. No obvious pattern of relationship was found between oak radial growth and climate regarding tree health status. Our results revealed that the drought has a weak impact on the process of oak decline on investigated sites in Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号