首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sparse-view computed tomography (CT) is a recent approach to reducing the radiation dose in patients and speeding up the data acquisition. Consequently, sparse-view CT has been of particular interest among researchers within the CT community. Advanced reconstruction algorithms for sparse-view CT, such as iterative algorithms with total-variation (TV), have been studied along with the problem of increasing computational burden and the blurring of artifacts in the reconstructed images. Studies on deep-learning-based approaches applying U-NET have recently achieved remarkable outcomes in various domains including low-dose CT. In this study, we propose a new method for sparse-view CT reconstruction based on a multi-level wavelet convolutional neural network (MWCNN). First, a filtered backprojection (FBP) was used to reconstruct a sparsely sampled sinogram from 60, 120, and 180 projections. Subsequently, the sparse-view data obtained from FBP were fed to a deep-learning network, i.e., the MWCNN. Our network architecture combines a wavelet transform and modified U-NET without pooling. By replacing the pooling function with the wavelet transform, the receptive field is enlarged to improve the performance. We qualitatively and quantitatively evaluated the interpolation, iterative TV method, and standard U-NET in terms of a reduction in the streaking artifacts and a preservation of the anatomical structures. When compared with other methods, the proposed method showed the highest performance based on various evaluation parameters such as the structural similarity, root mean square error, and resolution. These results indicate that the MWCNN possesses a powerful potential for achieving a sparse-view CT reconstruction.  相似文献   

2.
Innovations in CT have been impressive among imaging and medical technologies in both the hardware and software domain. The range and speed of CT scanning improved from the introduction of multidetector-row CT scanners with wide-array detectors and faster gantry rotation speeds. To tackle concerns over rising radiation doses from its increasing use and to improve image quality, CT reconstruction techniques evolved from filtered back projection to commercial release of iterative reconstruction techniques, and recently, of deep learning (DL)-based image reconstruction. These newer reconstruction techniques enable improved or retained image quality versus filtered back projection at lower radiation doses. DL can aid in image reconstruction with training data without total reliance on the physical model of the imaging process, unique artifacts of PCD-CT due to charge sharing, K-escape, fluorescence x-ray emission, and pulse pileups can be handled in the data-driven fashion. With sufficiently reconstructed images, a well-designed network can be trained to upgrade image quality over a practical/clinical threshold or define new/killer applications. Besides, the much smaller detector pixel for PCD-CT can lead to huge computational costs with traditional model-based iterative reconstruction methods whereas deep networks can be much faster with training and validation. In this review, we present techniques, applications, uses, and limitations of deep learning-based image reconstruction methods in CT.  相似文献   

3.
The Filtered Back-Projection (FBP) algorithm and its modified versions are the most important techniques for CT (Computerized tomography) reconstruction, however, it may produce aliasing degradation in the reconstructed images due to projection discretization. The general iterative reconstruction (IR) algorithms suffer from their heavy calculation burden and other drawbacks. In this paper, an iterative FBP approach is proposed to reduce the aliasing degradation. In the approach, the image reconstructed by FBP algorithm is treated as the intermediate image and projected along the original projection directions to produce the reprojection data. The difference between the original and reprojection data is filtered by a special digital filter, and then is reconstructed by FBP to produce a correction term. The correction term is added to the intermediate image to update it. This procedure can be performed iteratively to improve the reconstruction performance gradually until certain stopping criterion is satisfied. Some simulations and tests on real data show the proposed approach is better than FBP algorithm or some IR algorithms in term of some general image criteria. The calculation burden is several times that of FBP, which is much less than that of general IR algorithms and acceptable in the most situations. Therefore, the proposed algorithm has the potential applications in practical CT systems.  相似文献   

4.
PurposeThe exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR).MethodThe proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods.ResultsDecomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms.ConclusionIt is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers.  相似文献   

5.
PurposeTo study the feasibility of using an iterative reconstruction algorithm to improve previously reconstructed CT images which are judged to be non-diagnostic on clinical review. A novel rapidly converging, iterative algorithm (RSEMD) to reduce noise as compared with standard filtered back-projection algorithm has been developed.Materials and methodsThe RSEMD method was tested on in-silico, Catphan®500, and anthropomorphic 4D XCAT phantoms. The method was applied to noisy CT images previously reconstructed with FBP to determine improvements in SNR and CNR. To test the potential improvement in clinically relevant CT images, 4D XCAT phantom images were used to simulate a small, low contrast lesion placed in the liver.ResultsIn all of the phantom studies the images proved to have higher resolution and lower noise as compared with images reconstructed by conventional FBP. In general, the values of SNR and CNR reached a plateau at around 20 iterations with an improvement factor of about 1.5 for in noisy CT images. Improvements in lesion conspicuity after the application of RSEMD have also been demonstrated. The results obtained with the RSEMD method are in agreement with other iterative algorithms employed either in image space or with hybrid reconstruction algorithms.ConclusionsIn this proof of concept work, a rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach that operates on DICOM CT images has been demonstrated. The RSEMD method can be applied to sub-optimal routine-dose clinical CT images to improve image quality to potentially diagnostically acceptable levels.  相似文献   

6.
In industrial computed tomography (CT), the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object’s complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.  相似文献   

7.
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to ‘figures of merit’ (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.  相似文献   

8.
We have evaluated reconstruction methods using smooth basis functions in the electron tomography of complex biological specimens. In particular, we have investigated series expansion methods, with special emphasis on parallel computation. Among the methods investigated, the component averaging techniques have proven to be most efficient and have generally shown fast convergence rates. The use of smooth basis functions provides the reconstruction algorithms with an implicit regularization mechanism, very appropriate for noisy conditions. Furthermore, we have applied high-performance computing (HPC) techniques to address the computational requirements demanded by the reconstruction of large volumes. One of the standard techniques in parallel computing, domain decomposition, has yielded an effective computational algorithm which hides the latencies due to interprocessor communication. We present comparisons with weighted back-projection (WBP), one of the standard reconstruction methods in the areas of computational demand and reconstruction quality under noisy conditions. These techniques yield better results, according to objective measures of quality, than the weighted backprojection techniques after a very few iterations. As a consequence, the combination of efficient iterative algorithms and HPC techniques has proven to be well suited to the reconstruction of large biological specimens in electron tomography, yielding solutions in reasonable computation times.  相似文献   

9.
This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose4 (?)) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose4 levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose4 with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF50%). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose4, whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%–86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.  相似文献   

10.
Compressed sensing based iterative reconstruction algorithms for computed tomography such as adaptive steepest descent-projection on convex sets (ASD-POCS) are attractive due to their applicability in incomplete datasets such as sparse-view data and can reduce radiation dose to the patients while preserving image quality. Although IR algorithms reduce image noise compared to analytical Feldkamp-Davis-Kress (FDK) algorithm, they may generate artifacts, particularly along the periphery of the object. One popular solution is to use finer image-grid followed by down-sampling. This approach is computationally intensive but may be compensated by reducing the field of view. Our proposed solution is to replace the algebraic reconstruction technique within the original ASD-POCS by ordered subsets-simultaneous algebraic reconstruction technique (OS-SART) and with initialization using FDK image. We refer to this method as Fast, Iterative, TV-Regularized, Statistical reconstruction Technique (FIRST). In this study, we investigate FIRST for cone-beam dedicated breast CT with large image matrix. The signal-difference to noise ratio (SDNR), the difference of the mean value and the variance of adipose and fibroglandular tissues for both FDK and FIRST reconstructions were determined. With FDK serving as the reference, the root-mean-square error (RMSE), bias, and the full-width at half-maximum (FWHM) of microcalcifications in two orthogonal directions were also computed. Our results suggest that FIRST is competitive to the finer image-grid method with shorter reconstruction time. Images reconstructed using the FIRST do not exhibit artifacts and outperformed FDK in terms of image noise. This suggests the potential of this approach for radiation dose reduction in cone-beam breast CT.  相似文献   

11.

Objective

To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR) and a full model-based iterative reconstruction (MBIR) algorithm.

Methods

Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years) who received low-dose chest CT scans were included. Age-dependent noise index (NI) was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP), and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV), muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR) was calculated.

Result

In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP.

Conclusion

Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.  相似文献   

12.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

13.
Although iterative reconstruction is widely applied in SPECT/PET, its introduction in clinical CT is quite recent, in the past the demand for extensive computer power and long image reconstruction times have stopped the diffusion of this technique. Recently Iterative Reconstruction in Image Space (IRIS) has been introduced on Siemens top CT scanners. This recon method works on image data area, reducing the time-consuming loops on raw data and noise removal is obtained in subsequent iterative steps with a smoothing process. We evaluated image noise, low contrast resolution, CT number linearity and accuracy, transverse and z-axis spatial resolution using some dedicated phantoms in single, dual source and cardiac mode. We reconstructed images with a traditional filtered back-projection algorithm and with IRIS. The iterative procedure preserves spatial resolution, CT number accuracy and linearity moreover decreases image noise. These preliminary results support the idea that dose reduction with preserved image quality is possible with IRIS, even if studies on patients are necessary to confirm these data.  相似文献   

14.

Aim

To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.

Materials and Methods

27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose), SD12.5, SD15, SD17.5, SD20 (Groups from B to E) to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP), and Groups from B to E were reconstructed using iterative reconstruction (IR). Objective and subjective image quality (IQ) among groups were compared to determine an optimal radiation reduction level.

Results

The noise and signal-to-noise ratio (SNR) in Group D had no significant statistical difference from that in Group A (P = 1.0). The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05). There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups) of Group D. The effective dose (ED) of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001).

Conclusions

In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.  相似文献   

15.
In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data.  相似文献   

16.
PurposeTo investigate how various generations of iterative reconstruction (IR) algorithms impact low-contrast detectability (LCD) in abdominal computed tomography (CT) for different patient effective diameters, using a quantitative task-based approach.MethodsInvestigations were performed using an anthropomorphic abdominal phantom with two optional additional rings to simulate varying patient effective diameters (25, 30, and 35 cm), and containing multiple spherical targets (5, 6, and 8 mm in diameter) with a 20-HU contrast difference. The phantom was scanned using routine abdominal protocols (CTDIvol, 5.9–16 mGy) on four CT systems from two manufacturers. Images were reconstructed using both filtered back-projection (FBP) and various IR algorithms: ASiR 50%, SAFIRE 3 (both statistical IRs), ASiR-V 50%, ADMIRE 3 (both partial model-based IRs), or Veo (full model-based IR). Section thickness/interval was 2/1 mm or 2.5/1.25 mm, except 0.625/0.625 mm for Veo. We assessed LCD using a channelized Hotelling observer with 10 dense differences of Gaussian channels, with the area under the receiver operating characteristic curve (AUC) as a figure of merit.ResultsFor the smallest phantom (25-cm diameter) and smallest lesion size (5-mm diameter), AUC for FBP and the various IR algorithms did not significantly differ for any of the tested CT systems. For the largest phantom (35-cm diameter), Veo yielded the highest AUC improvement (8.5%). Statistical and partial model-based IR algorithms did not significantly improve LCD.ConclusionIn abdominal CT, switching from FBP to IR algorithms offers limited possibilities for achieving significant dose reductions while ensuring a constant objective LCD.  相似文献   

17.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

18.
PurposeArm-artifact, a type of streak artifact frequently observed in computed tomography (CT) images obtained at arms-down positioning in polytrauma patients, is known to degrade image quality. This study aimed to develop a novel arm-artifact reduction algorithm (AAR) applied to projection data.MethodsA phantom resembling an adult abdomen with two arms was scanned using a 16-row CT scanner. The projection data were processed by AAR, and CT images were reconstructed. The artifact reduction for the same phantom was compared with that achieved by two latest iterative reconstruction (IR) techniques (IR1 and IR2) using a normalized artifact index (nAI) at two locations (ventral and dorsal side). Image blurring as a processing side effect was compared with IR2 of the model-based IR using a plastic needle phantom. Additionally, the projection data of two clinical cases were processed using AAR, and the image noise was evaluated.ResultsAAR and IR2 significantly reduced nAI by 87.5% and 74.0%, respectively at the ventral side and 84.2% and 69.6%, respectively, at the dorsal side compared with each filtered back projection (P < 0.01), whereas IR1 did not. The proposed algorithm mostly maintained the original spatial resolution, compared with IR2, which yielded apparent image blurring. The image noise in the clinical cases was also reduced significantly (P < 0.01).ConclusionsAAR was more effective and superior than the latest IR techniques and is expected to improve the image quality of polytrauma CT imaging with arms-down positioning.  相似文献   

19.
PurposeHybrid iterative reconstruction (IR) is useful to reduce noise in computed tomography (CT) images. However, it often decreases the spatial resolution. The ability of high spatial resolution kernels (harder kernels) to compensate for the decrease in the spatial resolution of hybrid IRs was investigated.MethodsAn elliptic cylindrical phantom simulating an adult abdomen was used. Two types of rod-shaped objects with ~330 and ~130 HU were inserted to simulate contrasts of arteries in CT angiography. Two multi-slice CT systems were used to scan the phantoms with 120 kVp and scan doses of 20 and 10 mGy. The task transfer functions (TTFs) were measured from the circular edges of the rod images. The noise power spectrum (NPS) was measured from the images of the water-only section. The CT images were reconstructed using a filtered back projection (FBP) with baseline kernels and two levels of hybrid IRs with harder kernels. The profiles of the clinical images across the aortic dissection flaps were measured to evaluate actual spatial resolutions.ResultsThe TTF degradation of each hybrid IR was recovered by the harder kernels, whereas the noise reduction effect was retained, for both the 20 and 10 mGy. The profiles of the dissection flaps for the FBP were maintained by using the harder kernels. Even with the best combination of hybrid IR and harder kernel, the noise level at 10 mGy was not reduced to the level of FBP at 20 mGy, suggesting no capability of a 50% dose reduction while maintaining noise.  相似文献   

20.
Projection and back-projection are the most computationally intensive parts in Computed Tomography (CT) reconstruction, and are essential to acceleration of CT reconstruction algorithms. Compared to back-projection, parallelization efficiency in projection is highly limited by racing condition and thread unsynchronization. In this paper, a strategy of Fixed Sampling Number Projection (FSNP) is proposed to ensure the operation synchronization in the ray-driven projection with Graphical Processing Unit (GPU). Texture fetching is also used utilized to further accelerate the interpolations in both projection and back-projection. We validate the performance of this FSNP approach using both simulated and real cone-beam CT data. Experimental results show that compare to the conventional approach, the proposed FSNP method together with texture fetching is 10~16 times faster than the conventional approach based on global memory, and thus leads to more efficient iterative algorithm in CT reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号