首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

2.
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families.  相似文献   

3.
Yamamoto R  Yanagisawa HA  Yagi T  Kamiya R 《FEBS letters》2006,580(27):6357-6360
To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.  相似文献   

4.
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.  相似文献   

5.
Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms.  相似文献   

6.
Cilia and flagella have multiple dyneins in their inner and outer arms. Chlamydomonas inner-arm dynein contains at least seven major subspecies (dynein a to dynein g), of which all but dynein f (also called dynein I1) are the single-headed type that are composed of a single heavy chain, actin, and either centrin or a 28-kDa protein (p28). Dynein d was found to associate with two additional proteins of 38 kDa (p38) and 44 kDa (p44). Following the characterization of the p38 protein (R. Yamamoto, H. A. Yanagisawa, T. Yagi, and R. Kamiya, FEBS Lett. 580:6357-6360, 2006), we have identified p44 as a novel component of dynein d by using an immunoprecipitation approach. p44 is present along the length of the axonemes and is diminished, but not absent, in the ida4 and ida5 mutants, both lacking this dynein. In the ida5 axoneme, p44 and p38 appear to form a complex, suggesting that they constitute the docking site of dynein d on the outer doublet. p44 has potential homologues in other ciliated organisms. For example, the mouse homologue of p44, NYD-SP14, was found to be strongly expressed in tissues with motile cilia and flagella. These results suggest that inner-arm dynein d and its subunit organization are widely conserved.  相似文献   

7.
Dynein motors of cilia and flagella function in the context of the axoneme, a very large network of microtubules and associated proteins. To understand how dyneins assemble and attach to this network, we characterized two Chlamydomonas outer arm dynein assembly (oda) mutants at a new locus, ODA16. Both oda16 mutants display a reduced beat frequency and altered swimming behavior, similar to previously characterized oda mutants, but only a partial loss of axonemal dyneins as shown by both electron microscopy and immunoblots. Motility studies suggest that the remaining outer arm dyneins on oda16 axonemes are functional. The ODA16 locus encodes a 49-kDa WD-repeat domain protein. Homologues were found in mammalian and fly databases, but not in yeast or nematode databases, implying that this protein is only needed in organisms with motile cilia or flagella. The Chlamydomonas ODA16 protein shares 62% identity with its human homologue. Western blot analysis localizes more than 90% of ODA16p to the flagellar matrix. Because wild-type axonemes retain little ODA16p but can be reactivated to a normal beat in vitro, we hypothesize that ODA16p is not an essential dynein subunit, but a protein necessary for dynein transport into the flagellar compartment or assembly onto the axoneme.  相似文献   

8.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

9.
Outer arm dynein was purified from sperm flagella of a sea anemone, Anthopleura midori, and its biochemical and biophysical properties were characterized. The dynein, obtained at a 20S ATPase peak by sucrose density gradient centrifugation, consisted of two heavy chains, three intermediate chains, and seven light chains. The specific ATPase activity of dynein was 1.3 micromol Pi/mg/min. Four polypeptides (296, 296, 225, and 206 kDa) were formed by UV cleavage at 365 nm of dynein in the presence of vanadate and ATP. In addition, negatively stained images of dynein molecules and the hook-shaped image of the outer arm of the flagella indicated that sea anemone outer arm dynein is two-headed. In contrast to protist dyneins, which are three-headed, outer arm dyneins of flagella and cilia in multicellular animals are two-headed molecules corresponding to the two heavy chains. Phylogenetic considerations were made concerning the diversity of outer arm dyneins.  相似文献   

10.
Dyneins are responsible for essential movements in eukaryotic cells. The motor activity of each dynein complex resides in its complement of heavy chains. In the present study, we examined 136 heavy chain sequences from the completed genomes of 11 diverse model organisms, including examples from Viridiplantae, Excavata, Chromalveolata, and Metazoa. In many cases, we discovered dynein heavy chains previously not identified. For example, Tetrahymena expresses a total of 25 DYH genes rather than the previously identified 14. The Tetrahymena DYH genes are nonaxonemal DYH1 and DYH2; axonemal outer arm alpha, beta, and gamma; axonemal two-headed inner arm 1alpha and 1beta; and 18 single-headed inner arm heavy chains. The heavy chains divide into nine classes; six of these are highly conserved in sequence and number of isoforms in a given organism. The other three are single-headed inner arm dyneins, whose numbers vary significantly in different organisms. These findings lead to two conclusions. One, the last common ancestor of all eukaryotes expressed nine different dynein heavy chains. Two, subsequent to the divergences leading to different organisms, additional dynein heavy chains emerged. These newer dyneins are not well conserved across species and the variation may reflect different motility requirements in different organisms. Together, these results suggest that each of the nine classes of dyneins is functionally distinct, but members within some of the classes are not specialized. An understanding of the relationships among the various dynein heavy chains is important when deducing functions across species.  相似文献   

11.
Recent indirect observations have suggested that various axonemal proteins in cilia and flagella of live cells undergo turnover independently of shortening or elongation of the axoneme. To gain direct evidence, here we examined using a FRAP (fluorescence recovery after photobleaching) technique whether actin, a subunit of inner arm dynein, is being turned over in Chlamydomonas flagella. Fluorescently labeled rabbit actin was introduced by electroporation into the cells of ida5oda1, a double mutant between oda1 lacking outer arm dynein and ida5 lacking several species of inner arm dyneins due to the absence of a conventional-type actin. In actin-loaded cells, flagella became motile and fluorescent due to incorporation of inner-arm dyneins containing the labeled actin. Cells were sandwiched between an agar layer and a coverslip so as to restrict flagellar movement. After a small portion of a flagellum was photobleached, the fluorescence intensity in the bleached area was monitored with a sensitive video camera. The fluorescence intensity in the photobleached region was found to recover 10-40% of the original level over several tens of minutes without changing its position. The time course and extent of the recovery varied greatly from one cell to another, suggesting that the turnover depends on cellular conditions. Western blot analysis indicated that 70-80% of flagellar actin was associated with the axoneme. Hence this experiment provides direct evidence that an axonemal component undergoes dynamic exchange in stationary flagella.  相似文献   

12.
Background information. Spermatozoa show several changes in flagellar waveform, such as upon fertilization. Ca2+ has been shown to play critical roles in modulating the waveforms of sperm flagella. However, a Ca2+‐binding protein in sperm flagella that regulates axonemal dyneins has not been fully characterized. Results. We identified a novel neuronal calcium sensor family protein, named calaxin (Ca2+‐binding axonemal protein), in sperm flagella of the ascidian Ciona intestinalis. Calaxin has three EF‐hand Ca2+‐binding motifs, and its orthologues are present in metazoan species, but not in yeast, green algae or plant. Immunolocalization revealed that calaxin is localized near the outer arm of the sperm flagellar axonemes. Moreover, it is distributed in adult tissues bearing epithelial cilia. An in vitro binding experiment indicated that calaxin binds to outer arm dynein. A cross‐linking experiment showed that calaxin binds to β‐tubulin in situ. Overlay experiments further indicated that calaxin binds the β‐dynein heavy chain of outer arm dynein in the presence of Ca2+. Conclusions. These results suggest that calaxin is a potential Ca2+‐dependent modulator of outer arm dynein in metazoan cilia and flagella.  相似文献   

13.
Outer arm dynein removal from flagella by genetic or chemical methods causes decreased frequency and power, but little change in bending pattern. These results suggest that outer arm dynein operates within bends to increase the speed of bend propagation, but does not produce forces that alter the bending pattern established by inner arm dyneins. A flagellar model incorporating different cross-bridge models for inner and outer arm dyneins has been examined. The inner arm dynein model has a hyperbolic force-velocity curve, with a maximum average force at 0 sliding velocity of about 14 pN for each 96 nm group of inner arm dyneins. The outer arm dynein model has a very different force-velocity curve, with a maximum force at about 10-15% of V(max). The outer arm dynein model is adjusted so that the unloaded sliding velocity for a realistic mixture of inner and outer arm dyneins is twice the unloaded sliding velocity for the inner arm dynein model alone. With these cross-bridge models, a flagellar model can be obtained that reduces its sliding velocity and frequency by approximately 50% when outer arm dyneins are removed, with little change in bending pattern. The addition of outer arm dyneins, therefore, gives an approximately 4-fold increase in power output against viscous resistances, and outer arm dyneins may generate 90% or more of the power output. Cell Motil.  相似文献   

14.
Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components   总被引:1,自引:0,他引:1  
Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation.  相似文献   

15.
Motile cilia and flagella are organelles, which function in cell motility and in the transport of fluids over the surface of cells. Motility defects often result in a rare human disease, primary ciliary dyskinesia (PCD). Cell motility depends on axonemal dynein, a molecular motor that drives the beating of cilia and flagella. The dyneins are composed of multiple subunits, which are thought to be preassembled in the cytoplasm before they are transported into cilia and flagella. Axonemal dyneins have been extensively studied in Chlamydomonas. In addition, analyses of human PCDs over the past decade, together with studies in other model animals, have identified the conserved components required for dynein assembly. Recently also, the first cytoplasmic component of dynein assembly, kintoun (ktu), was elucidated through the analysis of a medaka mutant in combination with human genetics and cell biology and biochemical studies of Chlamydomonas. The components of dynein and the proteins involved in its cytoplasmic assembly process are discussed.  相似文献   

16.
A specific type of inner dynein arm is located primarily or exclusively in the proximal portion of Chlamydomonas flagella. This dynein is absent from flagella less than 6 microns long, is assembled during the second half of flagellar regeneration time and is resistant to extraction under conditions causing complete solubilization of two inner arm heavy chains and partial solubilization of three other heavy chains. This and other evidence described in this report suggest that the inner arm row is composed of five distinct types of dynein arms. Therefore, the units of three inner arms that repeat every 96 nm along the axoneme are composed of different dyneins in the proximal and distal portions of flagella.  相似文献   

17.
CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules.  相似文献   

18.
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.  相似文献   

19.
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor.  相似文献   

20.
Axonemal dynein complexes are preassembled in the cytoplasm before their transport to cilia, but the mechanism of this process remains unclear. We now show that mice lacking Pih1d3, a PIH1 domain–containing protein, develop normally but manifest male sterility. Pih1d3−/− sperm were immotile and fragile, with the axoneme of the flagellum lacking outer dynein arms (ODAs) and inner dynein arms (IDAs) and showing a disturbed 9+2 microtubule organization. Pih1d3 was expressed specifically in spermatogenic cells, with the mRNA being most abundant in pachytene spermatocytes. Pih1d3 localized to the cytoplasm of spermatogenic cells but was not detected in spermatids or mature sperm. The levels of ODA and IDA proteins were reduced in the mutant testis and sperm, and Pih1d3 was found to interact with an intermediate chain of ODA as well as with Hsp70 and Hsp90. Our results suggest that Pih1d3 contributes to cytoplasmic preassembly of dynein complexes in spermatogenic cells by stabilizing and promoting complex formation by ODA and IDA proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号