首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The unidirectional rates of passive permeation of a homologous series of saturated fatty acids and bile acids into rat epididymal adipocytes were measured to determine the permeability characteristics of this mammalian cell membrane. For fatty acids containing 5 to 12 carbon atoms the logarithm of the permeability coefficient was a linear function of the number of carbons in the fatty acid chain: fatty acids with less than five carbon atoms showed anomalously high permeabilities. Using the data for the fatty acids with 5 to 12 carbon atoms, the incremental free energy of transfer (delta delta F w leads to l) of the -CH2 moiety from the aqueous environment into the fat cell was calculated to equal -547 cal mole-1. The delta delta F w leads to l of the -OH moiety calculated from data using bile acids as the probe molecules was +1,225 cal mole-1. After rupturing the fat cells by freeze-thawing, partition ratios also were measured between bubber and the lipid phase of the adipocyte core using both the fatty acid series and a series of terminal diols as probe molecules. Using these partition ratios delta delta F w leads to l for the -CH2 and -OH substituent groups was calculated to equal -830 and +2,070 cal mole-1, respectively. On the basis of these studies, two conclusions were drawn. First, like many epithelial surfaces and the erythrocyte membrane, the fat cell membrane exhibits anomalously high permeabilities to small molecular weight, polar compounds. Since this behavior in the adipocyte, as in the erythrocyte, cannot be attributed to structures such as tight junctions, it must be explained on the basis of some physico-chemical feature of the cell membrane itself. Secondly, the values of the delta delta F w leads to l indicate that the adipocyte membrane is less polar than the intestinal and gallbladder membranes but more polar than the membranes of Nitella and the erythrocyte.  相似文献   

2.
A quantitative method for the measurement of putative glucocorticoid receptor biosynthesis in rat adipocytes is described. The method utilizes the incorporation of radioactive amino acids into newly synthesized putative receptor proteins and their subsequent separation from other labeled proteins by affinity chromatography. Dexamethasone and deoxycorticosterone-Sepharose are used as affinity adsorbants. Specific binding of radioactive putative receptors to these gels is time- and protein concentration-dependent, and is abolished by exposure of cells to cycloheximide, pretreatment of adipocyte cytosol preparations with unlabeled steroids or incubation of cytosols at 37°C for 4 h. Specifically bound radioactivity, which represents about 10% of the radioactivity initially associated with affinity adsorbants can be quantitatively eluted under rigidly defined conditions including high ionic strength. Specifically eluted material, which comprises up to 50% of total eluted radioactivity sediments at 3.8 S in sucrose gradients containing 1 M KCl, and electrophoretically migrates on 0.1% SDS gels in a single band with a molecular weight of about 50 000. The sedimentation coefficient is comparable to that of the native adipocyte cytosol receptor not subject to affinity chromatography (3.7 S). Under low ionic-strength conditions most of the native receptor sediments at 8 S. The molecular weight of 50 000 is in the range of those reported for glucocorticoid receptors of liver (45 000–66 000 for monomers). The properties of the protein or proteins measured in the present system are therefore consistent with the current state of knowledge regarding glucocorticoid receptors in adipocytes.  相似文献   

3.
The insolubility of fatty acids in cellular environments requires that specific trafficking mechanisms be developed to vectorally orient and deliver lipids for cellular needs. The roles of putative membrane bound fatty acid transporters and soluble carrier proteins are discussed in terms of mechanisms of fatty acid trafficking. The numerous roles for fatty acids as an energy source, as structural elements for membrane synthesis, as bioregulators and as prohormones with the potential to regulate gene expression, are discussed in terms of the necessity to regulate their intracellular location and concentration.  相似文献   

4.
5.
Hormone-sensitive lipase (HSL) is an intracellular lipase that plays an important role in the hydrolysis of triacylglycerol in adipose tissue. HSL has been shown to interact with adipocyte lipid-binding protein (ALBP), a member of the family of intracellular lipid-binding proteins that bind fatty acids and other hydrophobic ligands. The current studies have addressed the functional significance of the association and mapped the site of interaction between HSL and ALBP. Incubation of homogeneous ALBP with purified, recombinant HSL in vitro resulted in a 2-fold increase in substrate hydrolysis. Moreover, the ability of oleate to inhibit HSL hydrolytic activity was attenuated by co-incubation with ALBP. Co-transfection of Chinese hamster ovary cells with HSL and ALBP resulted in greater hydrolytic activity than transfection of cells with HSL and vector alone. Deletional mutations of HSL localized the region of HSL that interacts with ALBP to amino acids 192-200, and site-directed mutagenesis of individual amino acids in this region identified His-194 and Glu-199 as critical for mediating the interaction of HSL with ALBP. Interestingly, HSL mutants H194L and E199A, each of which retained normal basal hydrolytic activity, failed to display an increase in hydrolytic activity when co-transfected with wild type ALBP. Therefore, ALBP increases the hydrolytic activity of HSL through its ability to bind and sequester fatty acids and via specific protein-protein interaction. Thus, HSL and ALBP constitute a functionally important lipolytic complex.  相似文献   

6.
Elevated concentration of plasma non-esterified fatty acids (NEFA) is now recognized as a key factor in the onset of insulin-resistance and type 2 diabetes mellitus. During fasting, circulating NEFAs arise from white adipose tissue (WAT) as a consequence of lipolysis from stored triacylglycerols. However, a significant part of these FAs (30-70%) is re-esterified within the adipocyte, so that a recycling occurs and net FA output is much less than < true > lipolysis. Indeed, a balance between two antagonistic processes, lipolysis and FA re-esterification, controls the rate of net FA release from WAT. During fasting, re-esterification requires glyceroneogenesis defined as the de novo synthesis of glycerol-3-P from pyruvate, lactate or certain amino acids. The key enzyme in this process is the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C; EC 4.1.1.32). Recent advance has stressed the role of glyceroneogenesis and of PEPCK-C in FA release from WAT. Results indicate that glyceroneogenesis is indeed important to lipid homeostasis and that a disregulation in this pathway may have profound pathophysiological effects. The present review focuses on the regulation of glyceroneogenesis and of PEPCK-C gene expression and activity by FAs, retinoic acids, glucocorticoids and the hypolipidemic class of drugs, thiazolidinediones.  相似文献   

7.
The incorporation of long-chain fatty acids into phospholipids has been detected in adipocyte ghosts that were incubated with [1-14 C] stearic, [1-14 C] linoleic or [1-14 C] arachidonic acid. Adrenaline and adenosine activated this incorporation within 15 s of exposure of the ghosts to the hormones and the response was dose dependent. Maximum incorporation of labelled linoleic acid occurred at 10(-5) M adrenaline and 10(-7) M adenosine. The alpha-agonist phenylephrine and the beta-agonist isoproterenol were also shown to stimulate the incorporation of fatty acid in a dose dependent manner. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were each labelled preferentially with linoleic or arachidonic acid. p-Bromophenacylbromide, quinacrine and centrophenoxine inhibited the adrenaline-stimulated incorporation of fatty acids into ghost membrane phospholipids, and p-bromophenacylbromide also reduced the activation of adenylate cyclase by adrenaline. NaF, an activator of adenylate cyclase, like adrenaline, stimulated the incorporation of linoleic acid into ghost membrane phospholipids.  相似文献   

8.
The modulation of insulin sensitivity in visceral fat tissue could be important in the treatment of Type 2 diabetes mellitus. Selected fatty acids may impact on insulin-stimulated and basal glucose uptake in adipocytes, thus isolated rat epididymal adipocytes were exposed to 100 μM oleic, arachidonic, eicosapentaenoic, docosahexaenoic or stearic acids and insulin (15 nM) or vehicle for 30 min. Glucose uptake was quantified by measuring uptake of 3H-deoxyglucose/mg adipocyte protein/min. Where appropriate, inhibitors were included to elucidate the mechanisms involved.In this model, insulin stimulated glucose uptake with 62±7%. All fatty acids tested, except for stearic acid, depressed insulin-stimulated glucose uptake by an average of 33±4.2%. On the other hand, all fatty acids tested except stearic and arachidonic acids, stimulated basal glucose uptake with an average of 34±8.1%. Inhibitor studies showed the involvement of prostaglandins, lipoxins, protein kinase C and tyrosine kinase in these processes.  相似文献   

9.
10.
The primary products of de novo lipogenesis (DNL) are saturated fatty acids, which confer adverse cellular effects. Human adipocytes differentiated with no exogenous fat accumulated triacylglycerol (TG) in lipid droplets and differentiated normally. TG composition showed the products of DNL (saturated fatty acids from 12:0 to 18:0) together with unsaturated fatty acids (particularly 16:1n-7 and 18:1n-9) produced by elongation/desaturation. There was parallel upregulation of expression of genes involved in DNL and in fatty acid elongation and desaturation, suggesting coordinated control of expression. Enzyme products (desaturation ratios, elongation ratios, and total pathway flux) were also correlated with mRNA levels. We used (13)C-labeled substrates to study the pathway of DNL. Glucose (5 mM or 17.5 mM in the medium) provided less than half the carbon used for DNL (42% and 47%, respectively). Glutamine (2 mM) provided 9-10%, depending upon glucose concentration. In contrast, glucose provided most (72%) of the carbon of TG-glycerol. Pathway analysis using mass isotopomer distribution analysis (MIDA) revealed that the pathway for conversion of glucose to palmitate is complex. DNL in human fat cells is tightly coupled with further modification of fatty acids to produce a range of saturated and unsaturated fatty acids consistent with normal maturation.  相似文献   

11.
12.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

13.
Summary Sulfo-N-succinimidyl derivatives of the long-chain fatty acids, oleic and myristic, were synthesized and covalently reacted with isolated rat adipocytes. The plasma membrane proteins labeled by these compounds and the effect of labeling on the transport of long-chain fatty acids were investigated. Sulfo-N-succinimidyl oleate (SSO) and myristate (SSM) inhibited the transport of fatty acids (by about 70%). Inhibition of fatty acid transport was not a result of alterations in cell integrity, as intracellular water volume was not changed. It did not reflect effects on fatty acid metabolism, since it was observed under conditions where greater than 90% of the fatty acid taken up was recovered in the free form. The inhibitory effect was specific to the fatty acid transport system, as the transport of glucose and the permeation of retinoic acid, a substance with structural similarities to long-chain fatty acids, were unaffected. Sulfosuccinimidyl oleate reacted exclusively with a plasma membrane protein with an apparent size of 85 kDa while sulfosuccinimidyl myristate also labeled a 75-kDa while sulfosuccinimidyl myristate also labeled a 75-kDa protein. These proteins were among the ones labeled by diisothiocyanodisulfonic acid (DIDS) which also inhibits fatty acid transport irreversibly. The data suggest that the 85-kDa protein, which is the only one labeled by all three inhibitors is involved in facilitating membrane permeation of long-chain fatty acids.  相似文献   

14.
Fatty acids released from adipose triacylglycerol stores by lipolysis provide vertebrates with an important source of energy. We investigated the role of microsomal triacylglycerol hydrolase (TGH) in the mobilization of adipocyte triacylglycerols through inactivation of the TGH activity by RNA interference or chemical inhibition. Attenuation of TGH activity resulted in decreased basal but not isoproterenol-stimulated efflux of fatty acids from 3T3-L1 adipocytes. Lack of TGH activity was accompanied by accumulation of cellular triacylglycerols and cholesteryl esters without any changes in the expression of enzymes catalyzing triacylglycerol synthesis (diacylglycerol acyltransferases 1 and 2) or degradation (adipose triglyceride lipase and hormone-sensitive lipase). Inhibition of TGH-mediated lipolysis also did not affect insulin-stimulated Glut4 translocation from intracellular compartments to the plasma membrane or glucose uptake into adipocytes. These data suggest that TGH plays a role in adipose tissue triacylglycerol metabolism and may be a suitable pharmacological target for lowering fatty acid efflux from adipose tissue without altering glucose import.  相似文献   

15.
The monosaccharide transporter from the plasma membranes of rat adipocytes and insulin-stimulated adipocytes has been reconstituted in sonicated liposomes. The stereospecific D-glucose uptake by liposomes made from a range of phospholipids and incorporating fatty acids has been investigated. D-Glucose uptake is correlated with an increase in lipid fluidity as a consequence of the addition of fluidizing fatty acids, changes in phospholipid acyl chain length and temperature. Benzyl alcohol and ethyl alcohol, which are generally considered to increase bilayer fluidity, decrease stereo-specific D-glucose uptake in both whole adipocytes and reconstituted liposomes. It is suggested that, although these alcohols may affect D-glucose transport by lipid-mediated fluidity changes, they also interact directly with the transporter resulting in inhibition of transport.  相似文献   

16.
Clock(δ19)+MEL mutant mice, which retain melatonin rhythmicity, but lack peripheral tissue rhythmicity have impaired glucose tolerance, but reduced plasma free fatty acids, increased plasma adiponectin, and improved insulin sensitivity. Here, we report their response to a high-fat diet and adipocyte rhythmicity and function. The diet increased epigonadal fat weight similarly (twofold) in both wild-type and Clock(δ19)+MEL mice. The Clock(δ19) mutation abolished rhythmicity of Per2, Rev erbα and peroxisome proliferator-activated receptor-γ (Pparγ ) mRNA in epigonadal fat, but not Bmal1 mRNA, and reduced Rev erbα mRNA by 59 and 70% compared to the wild-type mice on the control and high-fat diets, respectively. The mutants had increased Adipoq mRNA expression in epigonadal fat (22%; P < 0.05) on a control diet, but showed no further change on a high-fat diet, and no change in Lep, Nampt or Retn mRNA on either diet. The Clock(δ19) mutation abolished rhythmicity of genes in epigonadal fat that contribute to plasma free fatty acids for mice on both diets, and increased Lipe mRNA expression in those on the high-fat diet. The persistent melatonin rhythm and reduced plasma free fatty acids in Clock(δ19)+MEL mutants may contribute to their enhanced insulin sensitivity, ameliorate the extent of impaired glucose homeostasis, and protect against the adverse effects of a high-fat diet.  相似文献   

17.
The factors regulating TNF alpha (TNFa) levels could be considered therapeutic targets against metabolic syndrome development. DNA methylation is a potent regulator of gene expression and may be associated with protein levels. In this study we investigate whether the effect of dietary fatty acids on TNFa released from adipocytes might be associated with modifications of the TNFa promoter DNA methylation status. A group of rats was assigned to three diets with a different composition of saturated, monounsaturated and polyunsaturated fatty acids. Samples of visceral adipose tissues were taken for adipocyte isolation, in which released TNFa levels were measured, and for methylation and expression studies. In addition, 3 T3-L1 cells were treated with palmitic, oleic and linoleic acids, with and without 5-Azacitydine (5-AZA). After treatments, cells and supernatants were included in the same analyses as rat samples. TNFa promoter methylation levels, gene expression and secretion were different according to the diets and fatty acid treatments associated with them. Cells treated with 5-AZA displayed higher TNFa levels than in the absence of 5-AZA, without differences between fatty acids. According to our results, dietary fatty acid regulation of adipocyte TNFa levels may be mediated by epigenetic modifications of the TNFa promoter DNA methylation levels.  相似文献   

18.
Triacylglycerol breakdown (lipolysis) results from a series of reactions culminated by activation of "hormone-stimulated" triacylglycerol lipase, an enzyme unique to adipose tissue. We have studied various components of the lipolytic process in human omental adipocyte precursors differentiating in culture. The levels of cyclic AMP, the "second messenger" of lipolytic hormones, were about sixfold higher in fat cell precursors than those in abdominal skin fibroblasts. L-Isoproterenol resulted in significant elevation of cyclic AMP levels in both cell types. Preincubation of intact adipocyte precursors with insulin resulted in significant enhancement of "low Km" cyclic AMP phosphodiesterase activity; in contrast, this hormone had no effect on fibroblast phosphodiesterase activity, a distinctive biochemical difference despite the morphological similarities between the two cell types during the early stages of adipocyte precursor maturation. Incubation of adipocyte precursors with isoproterenol resulted in the release of fatty acids into the medium, findings indicative of "hormone-stimulated" lipase activity and, hence, the operation of the entire "lipolytic cascade"; isoproterenol-stimulated lipolysis was inhibited by insulin. Release of fatty acids from fibroblasts was not observed. Thus, "hormone-stimulated" lipolysis and insulin stimulation of cyclic AMP phosphodiesterase activity are expressed during early stages of human adipocyte precursor differentiation.  相似文献   

19.
Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte.  相似文献   

20.
This study aimed to test the hypothesis that adipocyte TG accumulation could be altered by specifically perturbing pyruvate metabolism. We treated cultured 3T3-L1 adipocytes with chemical inhibitors of lactate dehydrogenase (LDH) and pyruvate carboxylase (PC), and characterized their global effects on intermediary metabolism using metabolic flux and isotopomer analysis. Inhibiting the enzymes over several days did not alter the adipocyte differentiation program as assessed by the expression levels of peroxisome proliferator-activated receptor-γ and glycerol-3-phosphate dehydrogenase. The main metabolic effects were to up-regulate intracellular lipolysis and decrease TG accumulation. Inhibiting PC also up-regulated glycolysis. Flux estimates indicated that the reduction in TG was due to decreased de novo fatty acid synthesis. Exogenous addition of free fatty acids dose-dependently increased the cellular TG level in the inhibitor-treated adipocytes, but not in untreated control cells. The results of this study support our hypothesis regarding the critical role of pyruvate reactions in TG synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号