首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.  相似文献   

3.
4.
The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for the functions of TcpX and TcpB, the two corresponding genes (tcpX and tcpB) were cloned, overexpressed, and purified in Escherichia coli. TcpX was purified as a C-terminal His tag fusion (TcpXH) and found to possess NADH:flavin oxidoreductase activity capable of reducing either FAD or flavin mononucleotide (FMN) with NADH as the reductant. TcpXH had no activity toward NADPH or riboflavin. Coupling of TcpXH and TcpA demonstrated that TcpXH provided FADH2 for TcpA catalysis. Among several substrates tested, TcpB showed the best activity for quinone reduction, with FMN or FAD as the cofactor and NADH as the reductant. TcpB could not replace TcpXH in a coupled assay with TcpA for 2,4,6-TCP metabolism, but TcpB could enhance TcpA activity. Further, we showed that TcpB was more effective in reducing 6-chlorohydroxyquinone than chemical reduction alone, using a thiol conjugation assay to probe transitory accumulation of the quinone. Thus, TcpB was acting as a quinone reductase for 6-chlorohydroxyquinone reduction during 2,4,6-TCP degradation.  相似文献   

5.
The effect of waterlogging of root nodules on nitrogenase activity and synthesis was studied in Pisum sativum inoculated with Rhizobium leguminosarum (strain PRE). It was shown that: 1. nitrogenase activity of intact pea plants was decreased by waterlogging, 2. this decrease was paralleled by a decline of the amount of active nitrogenase determined in toluene EDTA treated bacteroids, 3. SDS-polyacrylamide gel electrophoresis revealed that the amount of nitrogenase component II (CII) decreased by waterlogging while the amount of component I (CI) was not markedly affected, and 4. analysis of bacteroid proteins after 35SO4 labeling of pea plants showed that CII synthesis was repressed while CI synthesis continued indicating that the synthesis of CI and CII is regulated by independent mechanisms.  相似文献   

6.
The NAD(P)H oxidation and substrate monooxygenation activities of Pseudomonas cepacia salicylate hydroxylase can be uncoupled by added flavins. The uncoupling is postulated to result from a reducing equivalent exchange between the hydroxylase-bound FADH2 and the added flavins, leading to the reduction of the latter species and the regeneration of oxidized holoenzyme without hydroxylating the salicylate substrate. When exogenous FMN was added, the salicylate hydroxylase-catalyzed NAD(P)H oxidation could be coupled to the bacterial bioluminescence reaction, which is specific for fully reduced FMN as a substrate. The quantum yield of the coupled bioluminescence, based on the amount of NADH oxidized independently of salicylate monooxygenation, was determined to be 0.14 correlating closely with the known quantum yield of about 0.17 for reduced FMN in the luciferase-catalyzed bioluminescence reaction. A series of flavin derivatives were tested for their effects on the uncoupling of NAD(P)H oxidation and substrate monooxygenation activities of salicylate hydroxylase. Results indicated that the efficiency for interactions between the bound FADH2 and free flavins was sensitive to the position of structural modification, size, and charge of the added flavin species, suggesting that the bound FADH2 was partially exposed to aqueous medium under conditions of actual catalysis.  相似文献   

7.
Two sites for the β-oxidation of fatty acids in avocado (Persea americana L.) mesocarp exist. One site is the microbody, the other the mitochondrion. It is apparent that the mitochondrial membrane barrier, which remains intact after sucrose density gradient centrifugation, prevents rapid access of acyl CoA substrates to matrix β-oxidation sites. Thus, intact mitochondria showed little β-oxidation enzyme activity. Rupturing of the mitochondrial membrane allowed rapid access of the acyl CoA substrates to matrix sites. Consequently, in ruptured mitochondria, high O2-oxidation enzyme activities were measured. O2 uptake studies further distinguished the two organellar sites of β-oxidation. During palmitoyl CoA oxidation, O2 uptake was reduced by catalase and increased by KCN in the microbodies, whilst mitochondrial O2 uptake was unaffected by catalase and reduced by KCN. This reflected the differing fates of FADH2, produced during the first β-oxidation step, in the two organelles. In addition, only the mitochondrial β-oxidation of fatty acids was carnitine-dependent.  相似文献   

8.
Summary A large number of valuable starting materials for steroids synthesis (e.g. 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione, 9-hydroxy-4-androsten-17-one) have been produced by microbial transformation methods. This review helps to evaluate the microbial physiological interest of the widely used sterol sidechain degradation processes. Four inducible groups of the catabolic enzymes are involved in the sterol sidechain degradation pathway; the fatty acid -oxidation system, the -oxidase reaction, a methyl-crotonyl-CoA carboxylation system and the propionyl-CoA carboylase system.Altogether nine catabolic enzymes are involved in the -sitosterol sidechain degradation pathway. They work in 14 consecutive enzymatic steps. Summing up: three molecules of FADH2, three molecules of propionyl-SCoA, three of NADH and one molecule of acetic acid are formed, while the sidechain of one mole of sitosterol is removed selectively. The metabolism of the propionates and the acetate yield 18 molecules of NADH and 7 molecules of FADH2. Taking into consideration the whole process more than 80 molecules of ATP could be formed during the sitosterol sidechain degradation process.  相似文献   

9.
A metabolic network consisting of 48 reactions was established to describe intracellular processes during growth and poly-3-hydroxybutyrate (PHB) production for Cupriavidus necator DSM 545. Glycerol acted as the sole carbon source during exponential, steady-state cultivation conditions. Elementary flux modes were obtained by the program Metatool and analyzed by using yield space analysis. Four sets of elementary modes were obtained, depending on whether the pair NAD/NADH or FAD/FADH2 contributes to the reaction of glycerol-3-phosphate dehydrogenase (GLY-3-P DH), and whether 6-phosphogluconate dehydrogenase (6-PG DH) is present or not. Established metabolic network and the related system of equations provide multiple solutions for the simultaneous synthesis of PHB and biomass; this number of solutions can be further increased if NAD/NADH or FAD/FADH2 were assumed to contribute in the reaction of GLY-3-P DH. As a major outcome, it was demonstrated that experimentally determined yields for biomass and PHB with respect to glycerol fit well to the values obtained in silico when the Entner–Doudoroff pathway (ED) dominates over the glycolytic pathway; this is also the case if the Embden–Meyerhof–Parnas pathway dominates over the ED.  相似文献   

10.
4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH2)-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH2 in vitro, HpaB was able to use FADH2 and O2 for the oxidation of 4-hydroxyphenylacetate. HpaB also used chemically produced FADH2 for 4-hydroxyphenylacetate oxidation, further demonstrating that HpaB is an FADH2-utilizing monooxygenase. FADH2 generated by Fre was rapidly oxidized by O2 to form H2O2 in the absence of HpaB. When HpaB was included in the reaction mixture without 4-hydroxyphenylacetate, HpaB bound FADH2 and transitorily protected it from rapid autoxidation by O2. When 4-hydroxyphenylacetate was also present, HpaB effectively competed with O2 for FADH2 utilization, leading to 4-hydroxyphenylacetate oxidation. With sufficient amounts of HpaB in the reaction mixture, FADH2 produced by Fre was mainly used by HpaB for the oxidation of 4-hydroxyphenylacetate. At low HpaB concentrations, most FADH2 was autoxidized by O2, causing uncoupling. However, the coupling of the two enzymes' activities was increased by lowering FAD concentrations in the reaction mixture. A database search revealed that HpaB had sequence similarities to several proteins and gene products involved in biosynthesis and biodegradation in both bacteria and archaea. This is the first report of an FADH2-utilizing monooxygenase that uses FADH2 as a substrate rather than as a cofactor.  相似文献   

11.

Background

Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth.

Methodology/Principal Findings

The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase.

Conclusion/Significance

We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.  相似文献   

12.
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H2O2-forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H2O2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3 g/L and 0.326 g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H2O2 synthesis and increasing the ATP supply.  相似文献   

13.
Recently the F0 portion of the bovine mitochondrial F1F0-ATP synthase was shown to contain eight ‘c’ subunits (n?=?8). This surprised many in the field, as previously, the only other mitochondrial F0 (for yeast) was shown to have ten ‘c’ subunits. The metabolic implications of ‘c’ subunit copy number explored in this paper lead to several surprising conclusions: (1) Aerobically respiring E. coli (n?=?10) and animal mitochondria (n?=?8) both have very high F1F0 thermodynamic efficiencies of ≈90 % under typical conditions, whereas efficiency is only ≈65 % for chloroplasts (n?=?14). Reasons for this difference, including the importance of transmembrane potential (?Ψ) as a rotational catalyst, as opposed to an energy source, are discussed. (2) Maximum theoretical P/O ratios in animal mitochondria (n?=?8) are calculated to be 2.73 ATP/NADH and 1.64 ATP/FADH2, yielding 34.5 ATP/glucose (assuming NADH import via the malate/aspartate shuttle). The experimentally measured values of 2.44 (±0.15), 1.47 (±0.13), and 31.3 (±1.5), respectively, are only about 10 % lower, suggesting very little energy depletion via transmembrane proton leakage. (3) Finally, the thermodynamic efficiency of oxidative phosphorylation is not lower than that of substrate level phosphorylation, as previously believed. The overall thermodynamic efficiencies of oxidative phosphorylation, glycolysis, and the citric acid cycle are ≈80 % in all three processes.  相似文献   

14.
The cardiac Na+/Ca2+ exchanger (NCX) is the major Ca2+ efflux pathway on the sarcolemma, counterbalancing Ca2+ influx via L-type Ca2+ current during excitation-contraction coupling. Altered NCX activity modulates the sarcoplastic reticulum Ca2+ load and can contribute to abnormal Ca2+ handling and arrhythmias. NADH/NAD+ is the main redox couple controlling mitochondrial energy production, glycolysis, and other redox reactions. Here, we tested whether cytosolic NADH/NAD+ redox potential regulates NCX activity in adult cardiomyocytes. NCX current (INCX), measured with whole cell patch clamp, was inhibited in response to cytosolic NADH loaded directly via pipette or increased by extracellular lactate perfusion, whereas an increase of mitochondrial NADH had no effect. Reactive oxygen species (ROS) accumulation was enhanced by increasing cytosolic NADH, and NADH-induced INCX inhibition was abolished by the H2O2 scavenger catalase. NADH-induced ROS accumulation was independent of mitochondrial respiration (rotenone-insensitive) but was inhibited by the flavoenzyme blocker diphenylene iodonium. NADPH oxidase was ruled out as the effector because INCX was insensitive to cytosolic NADPH, and NADH-induced ROS and INCX inhibition were not abrogated by the specific NADPH oxidase inhibitor gp91ds-tat. This study reveals a novel mechanism of NCX regulation by cytosolic NADH/NAD+ redox potential through a ROS-generating NADH-driven flavoprotein oxidase. The mechanism is likely to play a key role in Ca2+ homeostasis and the response to alterations in the cytosolic pyridine nucleotide redox state during ischemia-reperfusion or other cardiovascular diseases.  相似文献   

15.
Oxygen radical formation in mitochondria is a highly important, but incompletely understood, attribute of eukaryotic cells. I propose a kinetic model in which the ratio between electrons entering the respiratory chain via FADH2 or NADH is a major determinant in radical formation. During the breakdown of glucose, this ratio is low; during fatty acid breakdown, this ratio is much higher. The longer the fatty acid, the higher the ratio and the higher the level of radical formation. This means that very long chain fatty acids should be broken down without generation of FADH2 for mitochondria. This is accomplished in peroxisomes, thus explaining their role and evolution. The model explains many recent observations regarding radical formation by the respiratory chain. It also sheds light on the reasons for the lack of neuronal fatty acid (beta‐) oxidation and for beneficial aspects of unsaturated fatty acids. Last but not least, it has very important implications for all models describing eukaryotic origins.  相似文献   

16.
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI–CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24 h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.  相似文献   

17.
During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.  相似文献   

18.
19.
Oxygen radical formation in mitochondria is an incompletely understood attribute of eukaryotic cells. Recently, a kinetic model was proposed, in which the ratio between electrons entering the respiratory chain via FADH2 or NADH determines radical formation. During glucose breakdown, the ratio is low; during fatty acid breakdown, the ratio is high (the ratio increasing—asymptotically—with fatty acid length to 0.5, when compared with 0.2 for glucose). Thus, fatty acid oxidation would generate higher levels of radical formation. As a result, breakdown of fatty acids, performed without generation of extra FADH2 in mitochondria, could be beneficial for the cell, especially in the case of long and very long chained ones. This possibly has been a major factor in the evolution of peroxisomes. Increased radical formation, as proposed by the model, can also shed light on the lack of neuronal fatty acid oxidation and tells us about hurdles during early eukaryotic evolution. We specifically focus on extending and discussing the model in light of recent publications and findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号