首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
PurposeInstitutional (local) Diagnostic Reference Levels for Cerebral Angiography (CA), Percutaneous Transhepatic Cholangiography (PTC), Transarterial Chemoembolization (TACE) and Percutaneous Transhepatic Biliary Drainage (PTBD) are reported in this study.Materials and methodsData for air kerma-area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT) and number of images (NI) as well as estimates of Peak Skin Dose (PSD) were collected for 142 patients. Therapeutic procedure complexity was also evaluated, in an attempt to incorporate it into the DRL analysis.ResultsLocal PKA DRL values were 70, 34, 189 and 54 Gy.cm2 for CA, PTC, TACE and PTBD respectively. The corresponding DRL values for Ka,r were 494, 194, 1186 and 400 mGy, for FT they were 9.2, 14.2, 27.5 and 22.9 min, for the NI they were 844, 32, 602 and 13 and for PSD they were 254, 256, 1598 and 540 mGy respectively. PKA for medium complexity PTBD procedures was 2.5 times higher than for simple procedures. For TACE, the corresponding ratio was 1.6. PSD was estimated to be roughly 50% of recorded Ka,r for procedures in the head/neck region and 10% higher than recorded Ka,r for procedures in the body region. In only 5 cases the 2 Gy dose alarm threshold for skin deterministic effects was exceeded.ConclusionProcedure complexity can differentiate DRLs in Interventional Radiology procedures. PSD could be deduced with reasonable accuracy from values of Ka,r that are reported in every angiography system.  相似文献   

2.
PurposeTo estimate the mean glandular dose of contrast enhanced digital mammography, using the EGSnrc Monte Carlo code and female adult voxel phantom.MethodsAutomatic exposure control of full field digital mammography system was used for the selection of the X-ray spectrum and the exposure settings for dual energy imaging. Measurements of the air-kerma and of the half value layers were performed and a Monte Carlo simulation of the digital mammography system was used to compute the mean glandular dose, for breast phantoms of various thicknesses, glandularities and for different X-ray spectra (low and high energy).ResultsFor breast phantoms of 2.0–8.0 cm thick and 0.1–100% glandular fraction, CC view acquisition, from AEC settings, can result in a mean glandular dose of 0.450 ± 0.022 mGy −2.575 ± 0.033 mGy for low energy images and 0.061 ± 0.021 mGy – 0.232 ± 0.033 mGy for high energy images. In MLO view acquisition mean glandular dose values ranged between 0.488 ± 0.007 mGy – 2.080 ± 0.021 mGy for low energy images and 0.065 ± 0.012 mGy – 0.215 ± 0.010 mGy for high energy images.ConclusionThe low kV part of contrast enhanced digital mammography is the main contributor to total mean glandular breast dose. The results of this study can be used to provide an estimated mean glandular dose for individual cases.  相似文献   

3.
This technical note proposes a method to reduce radiation dose for spine interventions under CT guidance without compromising the successful outcome of the procedure. Two consecutive periods of 14 months before and after optimization were investigated with 162 and 440 patients, respectively. By optimizing the acquisition parameters (decreased kV and mAs) and appropriately adjusting the reconstruction (kernels, slice thickness, etc) and visualization parameters, image quality was maintained suitable to perform the procedure. By reducing both kV and mAs, dose was reduced by 72% on fluoroscopy mode (i-fluoro) and sequential mode (i-sequence). Moreover, dose was reduced by 58% on helical mode (i-spiral). Depending on the radiologist, the fluoroscopy time was decreased by between 37% and 56%. Acquisitions with i-sequence were less irradiating than the i-fluoro or the i-spiral modes. Radiation doses were reduced by 65% for infiltrations, 51% for vertebral expansions, and 56% for bone biopsies. Median (1st quartile; 3rd quartile) effective dose were 2.1 (1.3; 3.5) mSv, 10.8 (6.7; 18.3) mSv for and 3.0 (2.4; 4.3) mSv, respectively. Radiologists reported “satisfactory” image quality. During interventional spine procedures under CT scan, reducing kV and mAs associated with the use of i-sequence substantially reduces patient dose.  相似文献   

4.
PurposeThis study aimed to determine a low-dose protocol for digital chest tomosynthesis (DTS).MethodsFive simulated nodules with a CT number of approximately 100 HU with size diameter of 3, 5, 8, 10, and 12 mm were inserted into an anthropomorphic chest phantom (N1 Lungman model), and then scanned by DTS system (Definium 8000) with varying tube voltage, copper filter thickness, and dose ratio. Three radiophotoluminescent (RPL) glass dosimeters, type GD-352 M with a dimension of 1.5 × 12 mm, were used to measure the entrance surface air kerma (ESAK) in each protocol. The effective dose (ED) was calculated using the recorded total dose-area-product (DAP). The signal-to-noise ratio (SNR) was determined for qualitative image quality evaluation. The image criteria and nodule detection capability were scored by two experienced radiologists. The selected low-dose protocol was further applied in a clinical study with 30 pulmonary nodule follow-up patients.ResultsThe average ESAK obtained from the standard default protocol was 1.68 ± 0.15 mGy, while an ESAK of 0.47 ± 0.02 mGy was found for a low-dose protocol. The EDs for the default and low-dose protocols were 313.98 ± 0.72 µSv and 100.55 ± 0.28 µSv, respectively. There were small non-significant differences in the image criteria and nodule detection scoring between the low-dose and default protocols interpreted by two radiologists. The effective dose of 98.87 ± 0.08 µSv was obtained in clinical study after applying the low-dose protocol.ConclusionsThe low-dose protocol obtained in this study can substantially reduce radiation dose while preserving an acceptable image quality compared to the standard protocol.  相似文献   

5.
6.
The Euratom directive 97/43 recommends the use of patient dose surveys in diagnostic radiology and the establishment of diagnostic reference dose levels (DRLs). The aims of this study are to perform measurements of the entrance surface dose (ESD) during diagnostic digital subtraction angiography (DSA) of the renal and carotid arteries using thermoluminescence dosemeters (TLDs), extraction of local DRLs, and calculation of the effective dose. Dose measurement for the staff was also performed. Dose measurements were performed on 48 participating patients. The mean effective dose was calculated to be 15.9 mSv and 8.9 mSv, for the renal and carotid DSA, respectively. The effective dose of the radiologist was calculated to be 0.022 mSv and 0.023 mSv per procedure for renal and carotid DSA respectively, when wearing a protective apron and using a movable ceiling mounted shield. Radiation dose variation depends on the physical characteristics of the patient, on the procedure preferences by radiologists and on the difficulties in conducting the procedures. The lack of DRLs for the specific examinations lead the research team to choose the DRL for DSA of the renal arteries to be 169 mGy for ESD at the pelvic region and for DSA of the carotid arteries to be 313 mGy for ESD at the region of the aortic arc.  相似文献   

7.
PurposeTo investigate within phantoms the minimum CT dose allowed for accurate attenuation correction of PET data and to quantify the effective dose reduction when a CT for this purpose is incorporated in the clinical setting.MethodsThe NEMA image quality phantom was scanned within a large parallelepiped container. Twenty-one different CT images were acquired to correct attenuation of PET raw data. Radiation dose and image quality were evaluated.Thirty-one patients with proven multiple myeloma who underwent a dual tracer PET/CT scan were retrospectively reviewed. 18F-fluorodeoxyglucose PET/CT included a diagnostic whole-body low dose CT (WBLDCT: 120 kV-80mAs) and 11C-Methionine PET/CT included a whole-body ultra-low dose CT (WBULDCT) for attenuation correction (100 kV-40mAs). Effective dose and image quality were analysed.ResultsOnly the two lowest radiation dose conditions (80 kV-20mAs and 80 kV-10mAs) produced artifacts in CT images that degraded corrected PET images. For all the other conditions (CTDIvol ≥ 0.43 mGy), PET contrast recovery coefficients varied less than ± 1.2%.Patients received a median dose of 6.4 mSv from diagnostic CT and 2.1 mSv from the attenuation correction CT. Despite the worse image quality of this CT, 94.8% of bone lesions were identifiable.ConclusionPhantom experiments showed that an ultra-low dose CT can be implemented in PET/CT procedures without any noticeable degradation in the attenuation corrected PET scan. The replacement of the standard CT for this ultra-low dose CT in clinical PET/CT scans involves a significant radiation dose reduction.  相似文献   

8.
PurposeThe diagnostic reference level (DRL) has been established to optimize the diagnostic methods and reduce radiation dose during radiographic examinations. The aim of this study was to present a completely new solution based on Cloud-Fog software architecture for automatic establishment of the DRL values during dental cone-beam computed tomography (CBCT) according to digital imaging and communications in medicine (DICOM) structured reports.Methods and MaterialsA Cloud-Fog software architecture was used for automatic data handling. This architecture used the DICOM structured reports as a source for extracting the required information by fog devices in the imaging center. These devices transferred the derived information to the cloud server. The cloud server calculated the value of indication-based DRL in dental CBCT imaging based upon the parameters and adequate quantities of the absorbed dose. The feedback of DRL value was continuously announced to the imaging centers in 6 phases. In each phase, the level of the dose was optimized in imaging centers.ResultsThe DRL value was established for 5-specific indications, including third molar teeth (511 mGy.cm2), implant (719 mGy.cm2), form and position anomalies of the tooth (408 mGy.cm2), dentoalveolar pathologies (612 mGy.cm2), and endodontics (632 mGy.cm2). The determination of the DRL value in each phase revealed a downward trend until stabilization.ConclusionThe new solution presented in this study makes it possible to calculate and update the DRL value nationally and automatically among all centers. Also, the results showed that this approach is successful in establishing stabilized DRL values.  相似文献   

9.
BackgroundThe Euratom directive 97/43 recommends the use of patient dose surveys in diagnostic radiology and the establishment of reference dose levels (DRLs).PurposeTo perform measurements of the dose delivered during diagnostic angiography of the lower limbs using thermoluminescence dosimeters (TLDs), extraction of DRLs and estimation of the effective dose and radiation risk for this particular examination.MethodsDose measurement was performed on 30 patients by using TLD sachets attached in 5 different positions not only on the patient, but also to the radiologist. All the appropriate factors were recorded. Measurement of the ESD was performed after each examination.ResultsThe mean entrance skin dose (ESD) was calculated to be 70.8, 67.7, 24.3, 18.4, 9.7 mGy at the level of aorta bifurcation, pelvis, femur, knees, and at feet, respectively. The average effective dose is 9.8 mSv with the radiation risks for fatal cancer to be 5.4 × 10?4. The effective dose of the radiologist was calculated to be 0.023 mSv per procedure.ConclusionRadiation dose variation depends on the physical characteristics of the patient, on the procedure preferences by radiologists and the difficulties in conducting procedures. The main reason for the increased patient dose, compared to other studies, is the number of frames rather than the duration of fluoroscopy. For DSA of the lower limbs, the DRL was chosen to be an entrance skin dose of 96.4 mGy in the pelvic region. The dose to the radiologist is negligible.  相似文献   

10.
Background radiation dose is used in dosimetry for estimating occupational doses of radiation workers or determining radiation dose of an individual following accidental exposure. In the present study, the absorbed dose and the background radiation level are determined using the electron spin resonance (ESR) method on tooth samples. The effect of using different tooth surfaces and teeth exposed with single medical X-rays on the absorbed dose are also evaluated. A total of 48 molars of position 6–8 were collected from 13 district hospitals in Peninsular Malaysia. Thirty-six teeth had not been exposed to any excessive radiation, and 12 teeth had been directly exposed to a single X-ray dose during medical treatment prior to extraction. There was no significant effect of tooth surfaces and exposure with single X-rays on the measured absorbed dose of an individual. The mean measured absorbed dose of the population is 34 ± 6.2 mGy, with an average tooth enamel age of 39 years. From the slope of a regression line, the estimated annual background dose for Peninsular Malaysia is 0.6 ± 0.3 mGy y−1. This value is slightly lower than the yearly background dose for Malaysia, and the radiation background dose is established by ESR tooth measurements on samples from India and Russia.  相似文献   

11.
12.
Recently discovered historical documents indicate that large releases of noble gases (mainly 41Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8–10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3–13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 ± 9 and 1 ± 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.  相似文献   

13.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

14.
The major goal of this study was to identify and quantitatively describe the association between the characteristics of chronic (low-dose rate) exposure to (low LET) ionizing radiation and cellularity of peripheral blood cell lines. About 3,200 hemograms (i.e., spectra of blood counts) obtained over the years of maximal exposure to ionizing radiation (1950–1956) for inhabitants of the Techa River were used in analyses. The mean cumulative red bone marrow dose (with standard errors), calculated using Techa River Dosimetry System-2000, was 333.6 ± 4.6 mGy (SD = 259.9 mGy, max = 1151 mGy) to the year 1956. The statistical approach included both empirical methods for estimating frequencies of cytopenic states of the investigated blood cell lines (e.g. neutrophile, platelets, erythrocyte, etc.), and regression methods, including generalized linear models and logistic regressions which allowed taking into account confounding factors (e.g., attained age, age at maximal exposure, presence of concomitant diseases, and demographic characteristics). The results of the analyses demonstrated hematopoiesis inhibition manifested by a decrease in peripheral blood cellularity and an increase in the frequency of cytopenia in all blood cell lines (leukocytes, including lymphocytes, monocytes, neutrophiles, as well as platelets and erythrocytes). The intensity of hematopoiesis inhibition in the period of maximal exposures is determined by the combined influence of the dose rate and cumulative dose. The contribution of specific confounding factors was quantified and shown to be much less important than dose characteristics. The best predictor among dose characteristics was identified for each blood cell line. A 2-fold increase in dose rate is assumed to be a characteristic of radiosensitivity and a quantitative characteristic of the effect.  相似文献   

15.
Histerosalpingography (HSG) remains the dominant diagnostic tool for investigation of infertility in women. Conversion factors used to estimate effective (E) and organ doses (HT) from air Kerma area product (KAP) are needed to estimate patient doses in HSG, performed with state-of-the-art fluoroscopic X-ray systems with digital detectors.In this study, estimates of E and HT for six critical organs/tissues, were derived on an individual basis in 120 HSG procedures and in 1410 irradiation events, performed on two X-ray systems from information available through the radiation dose structured report using Monte Carlo methods.Mean values of E and Hovaries were1.0 ± 0.9 mSv and 5.6 ± 5.4 mGy. E/KAP conversion factors of 0.13; 0.18; 0.28 and 0.35 mSv Gy−1cm−2 were established for irradiation events with a Cu filtration of 0.0; 0.1; 0.4 and 0.9 mm. A high agreement was obtained between E estimated through Monte Carlo methods and E/KAP conversion factors accounting separately for the different modes of fluoroscopy and the radiography component of HSG, with a systematic error of 0 mSv and lower/upper limits of agreement of −0.6 and 0.5 mSv. On the contrary, the use of a single coefficient of conversion did not provide accurate estimates of E, showing a bias of −0.4 mSv and lower and upper limits of agreement of −1.9 and 1.2 mSv.An algorithm for the estimation of effective and organ doses from KAP has been established in HSG procedures depending on the Cu filtration in the X-ray irradiation events.  相似文献   

16.
Computed tomography angiography (CTA) has become the most valuable imaging modality for the diagnosis of blood vessel diseases; however, patients are exposed to high radiation doses and the probability of cancer and other biological effects is increased. The objectives of this study were to measure the patient radiation dose during a CTA procedure and to estimate the radiation dose and biological effects.The study was conducted in two radiology departments equipped with 64-slice CT machines (Aquilion) calibrated according to international protocols. A total of 152 patients underwent brain, lower limb, chest, abdomen, and pelvis examinations. The effective radiation dose was estimated using ImPACT scan software. Cancer and biological risks were estimated using the International Commission on Radiological Protection (ICRP) conversion factors.The mean patient dose value per procedure (dose length product [DLP], mGy·cm) for all examinations was 437.8 ± 166, 568.8 ± 194, 516.0 ± 228, 581.8 ± 175, and 1082.9 ± 290 for the lower limbs, pelvis, abdomen, chest, and cerebral, respectively. The lens of the eye, uterus, and ovaries received high radiation doses compared to thyroid and testis. The overall patient risk per CTA procedure ranged between 15 and 36 cancer risks per 1 million procedures. Patient risk from CTA procedures is high during neck and abdomen procedures. Special concern should be provided to the lens of the eye and thyroid during brain CTA procedures. Patient dose reduction is an important consideration; thus, staff should optimize the radiation dose during CTA procedures.  相似文献   

17.
The aims of the present work were to quantify radiation doses arises from patients' exposure in mammographic X-ray imaging procedures and to estimate the radiation induced cancer risk. Sixty patients were evaluated using a calibrated digital mammography unit at King Khaled Hospital and Prince Sultan Center, Alkharj, Saudi Arabia. The average patient age (years) was 44.4 ± 10 (26–69). The average and range of exposure parameters were 29.1 ± 1.9 (24.0–33.0) and 78.4 ± 17.5 (28.0–173.0) for X-ray tube potential (kVp) and current multiplied by the exposure time (s) (mAs), respectively. The MGD (mGy) per single projection for craniocaudal (CC), Medio lateral oblique (MLO) and lateromedial (LM) was 1.02 ± 0.2 (0.4–1.8), 1.1 ± 0.3 (0.5–1.8), 1.1 ± 0.3 (0.5–1.9) per procedure, in that order. The average cancer risk per projection is 177 per million procedures. The cancer risk is significant during multiple image acquisition. The study revealed that 80% of the procedures with normal findings. However, precise justification is required especially for young patients.  相似文献   

18.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

19.
PurposeThe purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA).Materials and methodsUsing a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions.ResultsIn prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation.ConclusionThe OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA.  相似文献   

20.
PurposeThe purpose of this study was to determine local DRLs for children and adults undergoing intraoral dental examinations at the intraoral radiology units of the public hospitals in Cyprus.MethodsMeasurements were made on all the twenty intraoral X-ray units of the public hospitals in Cyprus with the intention to establish the local DRLs for all the possible intraoral X-ray examinations for children and adults. All units are film based. The measurements were made by a Dose Area Product (DAP) meter (GAMMEX RMI 841-RD) placed at the surface of the dental unit’s X-ray shaping cone (FSD 20 cm). A diagnostic radiology dosimeter (Dosimax Plus A) was also placed at an FSD of 100 cm to compare the dose reading between the two dosimeters.ResultsDRLs were established at the 3rd quartile for 7 exposure settings corresponding to 12 types of teeth (Adult and children mandibular and maxillary incisor, premolar and molar) with values of 197, 163, 128, 102, 81, 65 and 49 mGycm−2 and 7.23, 5.94, 4.75, 3.68, 3.10, 2.41 and 1.88 mGy for benchmark nominal exposure times of 1000, 800, 640, 500, 400, 320 and 250 ms respectively, at a nominal exposure voltage of 70 kVp.ConclusionsThe local DRLs of the present study compare well with other similar published DRLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号