共查询到20条相似文献,搜索用时 0 毫秒
1.
Shannon KB Canman JC Ben Moree C Tirnauer JS Salmon ED 《Molecular biology of the cell》2005,16(9):4423-4436
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation. 相似文献
2.
3.
Centrosomes are considered to be the major sites of microtubule nucleation in mitotic cells (reviewed in ), yet mitotic spindles can still form after laser ablation or disruption of centrosome function . Although kinetochores have been shown to nucleate microtubules, mechanisms for acentrosomal spindle formation remain unclear. Here, we performed live-cell microscopy of GFP-tubulin to examine spindle formation in Drosophila S2 cells after RNAi depletion of either gamma-tubulin, a microtubule nucleating protein, or centrosomin, a protein that recruits gamma-tubulin to the centrosome. In these RNAi-treated cells, we show that poorly focused bipolar spindles form through the self-organization of microtubules nucleated from chromosomes (a process involving gamma-tubulin), as well as from other potential sites, and through the incorporation of microtubules from the preceding interphase network. By tracking EB1-GFP (a microtubule-plus-end binding protein) in acentrosomal spindles, we also demonstrate that the spindle itself represents a source of new microtubule formation, as suggested by observations of numerous microtubule plus ends growing from acentrosomal poles toward the metaphase plate. We propose that the bipolar spindle propagates its own architecture by stimulating microtubule growth, thereby augmenting the well-described microtubule nucleation pathways that take place at centrosomes and chromosomes. 相似文献
4.
The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella 总被引:2,自引:0,他引:2
T Cavalier-Smith 《Bio Systems》1978,10(1-2):93-114
5.
During cytokinesis, constriction of a cortical contractile ring generates a furrow that partitions one cell into two. The contractile ring contains three filament systems: actin, bipolar myosin II filaments, and septins, GTP-binding hetero-oligomers that polymerize to form a membrane-associated lattice. The contractile ring also contains a potential filament crosslinker, Anillin, that binds all three filament types. Here, we show that the contractile ring possesses an intrinsic symmetry-breaking mechanism that promotes asymmetric furrowing. Asymmetric ingression requires Anillin and the septins, which promote the coalescence of components on one side of the contractile ring, but is insensitive to a 10-fold reduction in myosin II levels. When asymmetry is disrupted, cytokinesis becomes sensitive to partial inhibition of contractility. Thus, asymmetric furrow ingression, a prevalent but previously unexplored feature of cell division in metazoans, is generated by the action of two conserved furrow components and serves a mechanical function that makes cytokinesis robust. 相似文献
6.
Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells 总被引:15,自引:21,他引:15
下载免费PDF全文

When viewed by light microscopy the mitotic spindle in newt pneumocytes assembles in an optically clear area of cytoplasm, virtually devoid of mitochondria and other organelles, which can be much larger than the forming spindle. This unique optical property has allowed us to examine the behavior of individual microtubules, at the periphery of asters in highly flattened living prometaphase cells, by video-enhanced differential interference-contrast light microscopy and digital image processing. As in interphase newt pneumocytes (Cassimeris, L., N. K. Pryer, and E. D. Salmon. 1988. J. Cell Biol. 107:2223-2231), centrosomal (i.e., astral) microtubules in prometaphase cells appear to exhibit dynamic instability, elongating at a mean rate of 14.3 +/- 5.1 microns/min (N = 19) and shortening at approximately 16 microns/min. Under favorable conditions the initial interaction between a kinetochore and the forming spindle can be directly observed. During this process the unattached chromosome is repeatedly probed by microtubules projecting from one of the polar regions. When one of these microtubules contacts the primary constriction the chromosome rapidly undergoes poleward translocation. Our observations on living mitotic cells directly demonstrate, for the first time, that chromosome attachment results from an interaction between astral microtubules and the kinetochore. 相似文献
7.
Cell polarity is a very well conserved process important for cell differentiation, cell migration, and embryonic development. After the establishment of distinct cortical domains, polarity cues have to be stabilized and maintained within a fluid and dynamic membrane to achieve proper cell asymmetry. Microtubules have long been thought to deliver the signals required to polarize a cell. While previous studies suggest that microtubules play a key role in the establishment of polarity, the requirement of microtubules during maintenance phase remains unclear. In this study, we show that depletion of Caenorhabditis elegans RACK-1, which leads to short astral microtubules during prometaphase, specifically affects maintenance of cortical PAR domains and Dynamin localization. We then investigated the consequence of knocking down other factors that also abolish astral microtubule elongation during polarity maintenance phase. We found a correlation between short astral microtubules and the instability of PAR-6 and PAR-2 domains during maintenance phase. Our data support a necessary role for astral microtubules in the maintenance phase of cell polarity. 相似文献
8.
In eukaryotes, both chromosome segregation and the determination of the cell division cleavage plane depend on the mitotic spindle apparatus. Spindle malfunctioning can lead to chromosome mis-segregation and cytokinesis defects and hence result in aneuploidy. Thus, the understanding of the structure and function of mitotic spindles is of interest not only from the perspective of basic science, but has implications also for human health and disease. Until recently, this complex microtubule-based structure was studied mainly by cell biological techniques in mammalian cells, by biochemical assays in Xenopus egg extracts, and by genetic approaches in genetically tractable organisms such as yeast, flies, and nematodes. With the rapid development of mass spectrometry and its increasing application to biological problems, it has become possible to subject highly complex structures, such as the mitotic spindle apparatus, to proteomics approaches. Such studies require the isolation of the mitotic spindle, or its substructures, in sufficient amounts and free of excessive contaminants. A number of methods for the isolation of mitotic spindles from mammalian tissue culture cells have been developed in the past. We have compared these methods and found that protocols based on the stabilization of microtubules by taxol were most efficient and reproducible. Here, we describe the further optimization of a taxol-based method, originally developed by Zieve and Solomon [Cell 28 (1982) 233-242], and its application to the isolation of human mitotic spindles at a scale suitable for mass spectrometric analysis [G. Sauer, R. Korner, A. Hanisch, A. Ries, E.A. Nigg, H.H.W. Sillje, Mol. Cell. Proteomics 4 (2005) 35-43]. 相似文献
9.
Specific association of STOP protein with microtubules in vitro and with stable microtubules in mitotic spindles of cultured cells. 总被引:6,自引:0,他引:6
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo. 相似文献
10.
Ryota Uehara Tomoko Kamasaki Shota Hiruma Ina Poser Kinya Yoda Junichiro Yajima Daniel W. Gerlich Gohta Goshima 《Molecular biology of the cell》2016,27(5):812-827
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. 相似文献
11.
Raymond Rappaport 《Development, growth & differentiation》1997,39(2):221-226
The midpoint of the mitotic apparatus is fixed in the future division plane long before the division mechanism develops, and this static relationship has been considered essential in speculations concerning division mechanism establishment. The purpose of the present investigation was to determine whether prevention of the static relationship affects the establishment process. Sand dollar eggs were reshaped into cylinders by confinement in an elastic capillary tube and, beginning about 20 min before cleavage, the mitotic apparatus was kept in reciprocal motion by alternately compressing the poles. When the movement was continuous and the excursions were 25, 50 or 75 μm, furrow activity developed near the midpoint of the region underlain by the mitotic apparatus. The acuteness of the furrow decreased as the distance the mitotic apparatus was moved increased. When the movement was made discontinuous by allowing the mitotic apparatus to pause at the end of each excursion, the results depended upon the duration of the pause. Pauses 30 s long resulted in a single furrow formed in the midpoint of the entire region underlain by the mitotic apparatus. When the pauses were 45s long, furrowing activity developed in both regions where the mitotic apparatus was allowed to pause. The results indicated that the normal static relation between the mitotic apparatus midpoint and the division plane is unnecessary for division mechanism establishment. They also demonstrate that a restricted region of contractile activity can be established in the cortex despite experimentally induced spreading and dilution of mitotic apparatus effect. 相似文献
12.
Vesicles and actin are targeted to the cleavage furrow via furrow microtubules and the central spindle
下载免费PDF全文

During cytokinesis, cleavage furrow invagination requires an actomyosin-based contractile ring and addition of new membrane. Little is known about how this actin and membrane traffic to the cleavage furrow. We address this through live analysis of fluorescently tagged vesicles in postcellularized Drosophila melanogaster embryos. We find that during cytokinesis, F-actin and membrane are targeted as a unit to invaginating furrows through formation of F-actin-associated vesicles. F-actin puncta strongly colocalize with endosomal, but not Golgi-derived, vesicles. These vesicles are recruited to the cleavage furrow along the central spindle and a distinct population of microtubules (MTs) in contact with the leading furrow edge (furrow MTs). We find that Rho-specific guanine nucleotide exchange factor mutants, pebble (pbl), severely disrupt this F-actin-associated vesicle transport. These transport defects are a consequence of the pbl mutants' inability to properly form furrow MTs and the central spindle. Transport of F-actin-associated vesicles on furrow MTs and the central spindle is thus an important mechanism by which actin and membrane are delivered to the cleavage furrow. 相似文献
13.
Summary Cytokinesis following asymmetrical pollen mitosis was studied in the slipper orchidCypripedium fasciculatum using techniques of immunofluorescence, confocal laser scanning, and transmission electron microscopy. Data from stereo reconstructions of double labelled preparations (microtubules/nuclei) show that the contribution of residual spindle fibers to development of the interzonal array is minor; rather, new populations of microtubules are nucleated in association with the two groups of anaphase chromosomes. As kinetochores reach the poles, trailing arms of the chromosomes and nonkinetochore microtubules are displaced outward in the equatorial zone and by early telophase the interzone is left virtually free of microtubules. The interzonal apparatus has its origin in a massive proliferation of microtubules from the polar regions and surfaces of contracting chromosomes. Each polar region appears as a hub from which microtubules radiate in a spoke-like configuration and numerous tufts of microtubules appear to emanate from margins of the chromosomes themselves. These newly organized arrays of microtubules extend to the equatorial region where they interact to form the interzonal apparatus. Increasing organization of microtubules in the interzone results in development of a typical phragmoplast configuration consisting of opposing cone-like bundles of microtubules bisected by an unstained equatorial line. 相似文献
14.
ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules
下载免费PDF全文

Marta Gai Federico T Bianchi Cristiana Vagnoni Fiammetta Vernì Silvia Bonaccorsi Selina Pasquero Gaia E Berto Francesco Sgrò Alessandra A Chiotto Laura Annaratone Anna Sapino Anna Bergo Nicoletta Landsberger Jacqueline Bond Wieland B Huttner Ferdinando Di Cunto 《EMBO reports》2017,18(10):1870-1870
15.
Gary G. Borisy 《Journal of molecular biology》1978,124(3):565-570
Microtubules are polar structures that grow preferentially at one end. Measurement of their rate of directional growth can be used as a polarity indicator to determine their orientation with respect to a nucleation site. The results are interpreted to signify that the microtubules originating from the centrosomes and chromosomes of the mitotic spindle are antiparallel to each other. 相似文献
16.
17.
Distinct pathways for the early recruitment of myosin II and actin to the cytokinetic furrow 总被引:1,自引:1,他引:1
下载免费PDF全文

Equatorial organization of myosin II and actin has been recognized as a universal event in cytokinesis of animal cells. Current models for the formation of equatorial cortex favor either directional cortical transport toward the equator or localized de novo assembly. However, this process has never been analyzed directly in dividing mammalian cells at a high resolution. Here we applied total internal reflection fluorescence microscope (TIRF-M), coupled with spatial temporal image correlation spectroscopy (STICS) and a new analytical approach termed temporal differential microscopy (TDM), to image the dynamics of myosin II and actin during the assembly of equatorial cortex. Our results indicated distinct and at least partially independent mechanisms for the early equatorial recruitment of myosin and actin filaments. Cortical myosin showed no detectable directional flow during early cytokinesis. In addition to equatorial assembly, we showed that localized inhibition of disassembly contributed to the formation of the equatorial myosin band. In contrast to myosin, actin filaments underwent a striking flux toward the equator. Myosin motor activity was required for the actin flux, but not for actin concentration in the furrow, suggesting that there was a flux-independent, de novo mechanism for actin recruitment along the equator. Our results indicate that cytokinesis involves signals that regulate both assembly and disassembly activities and argue against mechanisms that are coupled to global cortical movements. 相似文献
18.
Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe 总被引:7,自引:4,他引:7
下载免费PDF全文

《The Journal of cell biology》1993,120(1):141-151
Mitotic spindles of Schizosaccharomyces pombe have been studied by EM, using serial cross sections to reconstruct 12 spindles from cells that were ultrarapidly frozen and fixed by freeze substitution. The resulting distributions of microtubules (MTs) have been analyzed by computer. Short spindles contain two kinds of MTs: continuous ones that run from pole to pole and MTs that originate at one pole and end in the body of the spindle. Among the latter there are three pairs of MT bundles that end on fibrous, darkly staining structures that we interpret as kinetochores. The number of MTs ending at each putative kinetochore ranges from two to four; all kinetochore-associated MTs disappear as the spindle elongates from 3-6 microns. At this and greater spindle lengths, there are no continuous MTs, only polar MTs that interdigitate at the spindle midzone, but the spindle continues to elongate. An analysis of the density of neighboring MTs at the midzone of long spindles shows that their most common spacing is approximately 40 nm, center to center, and that there is a preferred angular separation of 90 degrees. Only hints of such square-packing are found at the midzone of short spindles, and near the poles there is no apparent order at any mitotic stage. Our data suggest that the kinetochore MTs (KMTs) do not interact directly with nonkinetochore MTs, but that interdigitating MTs from the two spindle poles do interact to form a mechanically stable bundle that connects the poles. As the spindle elongates, the number of MTs decreases while the mean length of the MTs that remain increases. We conclude that the chromosomes of S. pombe become attached to the spindle by kinetochore MTs, that these MTs disappear as the chromosomes segregate, that increased separation of daughter nuclei is accompanied by a sliding apart of anti-parallel MTs, and that the mitotic processes of S. pombe are much like those in other eukaryotic cells. 相似文献
19.
Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. 相似文献
20.
Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs 总被引:7,自引:0,他引:7
R Rappaport 《The Journal of experimental zoology》1985,234(1):167-171
The methods used previously to demonstrate the ability of a single mitotic apparatus to elicit multiple furrows involved considerable cell distortion and did not permit the investigator to control the positioning of the parts or to observe satisfactorily the early stages of furrow development. In this investigation, Echinarachnius parma eggs were confined in 82 microns i.d. transparent, silicone rubber-walled capillaries, and the mitotic apparatus was moved by pushing the poles inward with 55-microns-diameter glass balls. When the mitotic apparatus was shifted immediately after the furrow first appeared, a new furrow appeared in the normal relation to the new position in 1-2 minutes. The same mitotic apparatus could elicit up to 13 furrows as it was shifted back and forth by alternately pushing in the poles. The previous furrow regressed as the new furrow developed. The operations protracted the furrow establishment period to as long as 24.5 minutes after establishment of the first furrow. The characteristics of furrow regression were related to the distance the mitotic apparatus was moved. It is unlikely that regression was caused either by stress imposed on the surface or the removal of the mitotic apparatus from the vicinity of the furrow. 相似文献