首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection.  相似文献   

2.
3.
Helicobacter pylori (H. pylori) infection plays an important role in gastric carcinogenesis. This bacterium may induce cancer transformation and change the susceptibility of gastric mucosa cells to various exogenous dietary irritants. The aim of the study was to evaluate the influence of H. pylori infection on the reaction of the stomach cells to a genotoxic effect of heterocyclic amines (HCAs). These well-known mutagens are formed during cooking of protein-rich foods, primarily meat. Taking into account that persons consuming a mixed-western diet are exposed to these compound nearly an entire lifetime and more than half of human population is infected with H. pylori, it is important to assess the combined effect of H. pylori infection and HCAs in the context of DNA damage in gastric mucosa cells, which is a prerequisite to cancer transformation. We employed 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) because these substances are present in a great amount in cooked and fried meat. Using alkaline comet assay, we showed that the extent of the DNA damage induced by HCAs was significantly higher in H. pylori infected gastric mucosa cells than in non-infected counterparts. We did not observed any difference in the efficiency of repair of DNA lesions induced by HCAs in both type of cells. Vitamin C reduced the genotoxic effects of HCAs in H. pylori infected and non-infected gastric mucosa cells. Melatonin more effectively decreased DNA damage caused by HCAs in H. pylori infected gastric mucosa cells as compared with control. Our results suggest that H. pylori infection may influence the susceptibility of gastric mucosa cells to HCAs and dietary antioxidative substances, including vitamin C and melatonin may inhibit the genotoxic effects of HCAs on gastric mucosa cells and may reduce the risk of carcinogenesis caused by food borne mutagens and H. pylori infection.  相似文献   

4.
Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen.  相似文献   

5.
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.  相似文献   

6.
The human gastric pathogen Helicobacter pylori causes chronic gastritis, peptic ulcer disease, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. It infects over 50% of the worlds' population, however, only a small subset of infected people experience H. pylori-associated illnesses. Associations with disease-specific factors remain enigmatic years after the genome sequences were deciphered. Infection with strains of Helicobacter pylori that carry the cytotoxin-associated antigen A (cagA) gene is associated with gastric carcinoma. Recent studies revealed mechanisms through which the cagA protein triggers oncopathogenic activities. Other candidate genes such as some members of the so-called plasticity region cluster are also implicated to be associated with carcinoma of stomach. Study of the evolution of polymorphisms and sequence variation in H. pylori populations on a global basis has provided a window into the history of human population migration and co-evolution of this pathogen with its host. Possible symbiotic relationships were debated since the discovery of this pathogen. The debate has been further intensified as some studies have posed the possibility that H. pylori infection may be beneficial in some humans. This assumption is based on increased incidence of gastro-oesophageal reflux disease (GERD), Barrett's oesophagus and adenocarcinoma of the oesophagus following H. pylori eradication in some countries. The contribution of comparative genomics to our understanding of the genome organisation and diversity of H. pylori and its pathophysiological importance to human healthcare is exemplified in this review.  相似文献   

7.
《The ISME journal》2021,15(1):78
Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.Subject terms: Population genetics, Microbial genetics  相似文献   

8.
9.
10.
The human gastric pathogen Helicobacter pylori is usually acquired during childhood and, in the absence of treatment, chronic infection persists through most of the host''s life. However, the frequency and importance of H. pylori transmission between adults is underestimated. Here we sequenced the complete genomes of H. pylori strains that were transmitted between spouses and analysed the genomic changes. Similar to H. pylori from chronic infection, a significantly high proportion of the determined 31 SNPs and 10 recombinant DNA fragments affected genes of the hop family of outer membrane proteins, some of which are known to be adhesins. In addition, changes in a fucosyltransferase gene modified the LPS component of the bacterial cell surface, suggesting strong diversifying selection. In contrast, virulence factor genes were not affected by the genomic changes. We propose a model of the genomic changes that are associated with the transmission and adaptation of H. pylori to a new human host.  相似文献   

11.
12.
The pathogenesis of stomach cells can be associated with their susceptibility to exogenous dietary irritants, like nitrosamines such as dimethylnitrosamines (DMNA), and to the effects of non-dietary factors, including Helicobacter pylori infection. We used N-methyl-N’-nitro N-nitrosoguanidyne (MNNG) as a surrogate agent that induces a spectrum of DNA damage similar to DMNA. Using the alkaline comet assay, we showed that antioxidants — vitamins C and E, quercetin, and melatonin — reduced the genotoxic effect of MNNG in H. pylori-infected and non-infected human gastric mucosa cells (GMCs). To compare the sensitivity of the stomach and the blood, the experiment was also carried out in peripheral blood. We observed a higher level of DNA damage induced by MNNG in H. pylori-infected than in noninfected GMCs. We did not note any difference in the efficacy of the repair of the damage in either type of GMC. H. pylori infection may play an important role in the pathogenesis of GMCs, as it can modulate their susceptibility to dietary mutagens/carcinogens, thus contributing to gastric cancer.  相似文献   

13.
The human gastric pathogen Helicobacter pylori (H. pylori) is a successful colonizer of the stomach. H. pylori infection strongly correlates with the development and progression of chronic gastritis, peptic ulcer disease, and gastric malignances. Vaccination is a promising strategy for preventing H. pylori infection. In this study, we evaluated the candidate antigens heat shock protein A (HspA) and H. pylori γ-glutamyl transpeptidase (GGT) for their effectiveness in development of subunit vaccines against H. pylori infection. rHspA, rGGT, and rHspA-GGT, a fusion protein based on HspA and GGT, were constructed and separately expressed in Escherichia coli and purified. Mice were then immunized intranasally with these proteins, with or without adjuvant. Immunized mice exhibited reduced bacterial colonization in stomach. The highest reduction in bacterial colonization was seen in mice immunized with the fusion protein rHspA-GGT when paired with the mucosal adjuvant LTB. Protection against H. pylori colonization was mediated by a strong systemic and localized humoral immune response, as well as a balanced Th1/Th2 cytokine response. In addition, immunofluorescence microscopy confirmed that rHspA-GGT specific rabbit antibodies were able to directly bind H. pylori in vitro. These results suggest antibodies are essential to the protective immunity associated with rHspA-GGT immunization. In summary, our results suggest HspA and GGT are promising vaccine candidates for protection against H. pylori infection.  相似文献   

14.
Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptocccus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.  相似文献   

15.
Helicobacter pylori infection represents one of the most common bacterial infections worldwide. The inflammatory response to this bacterium involves a large influx of neutrophils to the lamina propria of the gastric mucosa. However, little is known about the receptors and molecular mechanisms involved in activation of these neutrophils. In this study, we aimed to determine the role of toll-like receptor 9 (TLR9) in the response of human neutrophils to H. pylori and purified H. pylori DNA (Hp-DNA). Neutrophils were isolated from the blood of adult volunteers and challenged with either H. pylori or Hp-DNA. We found that both, H. pylori and Hp-DNA induced increased expression and release of IL-8. Furthermore, we showed that TLR9 is involved in the induction of IL-8 production by H. pylori and Hp-DNA. IL-8 production induced by H. pylori but not by Hp-DNA was partially mediated by NF-κB. In conclusion, this study showed for first time that both, H. pylori and Hp-DNA activate TLR9 and induce a different inflammatory response that leads to activation of neutrophils.  相似文献   

16.
Helicobacter pylori is a bacterial pathogen that establishes life-long infections in humans, and its presence in the gastric epithelium is strongly associated with gastritis, peptic ulcer disease, and gastric cancer. Having evolved in this specific gastric niche for hundreds of thousands of years, this microbe has become dependent on its human host. Bioinformatic analysis reveals that H. pylori has lost several genes involved in the de novo synthesis of purine nucleotides, and without this pathway present, H. pylori must salvage purines from its environment in order to grow. While the presence and abundance of free purines in various mammalian tissues has been loosely quantified, the concentration of purines present within the gastric mucosa remains unknown. There is evidence, however, that a significant amount of extracellular DNA is present in the human gastric mucosal layer as a result of epithelial cell turnover, and this DNA has the potential to serve as an adequate purine source for gastric purine auxotrophs. In this study, we characterize the ability of H. pylori to grow utilizing only DNA as a purine source. We show that this ability is independent of the ComB DNA uptake system, and that H. pylori utilization of DNA as a purine source is largely influenced by the presence of an outer membrane-associated nuclease (NucT). A ΔnucT mutant exhibits significantly reduced extracellular nuclease activity and is deficient in growth when DNA is provided as the sole purine source in laboratory growth media. These growth defects are also evident when this nuclease mutant is grown in the presence of AGS cells or in purine-free tissue culture medium that has been conditioned by AGS cells in the absence of fetal bovine serum. Taken together, these results indicate that the salvage of purines from exogenous host cell DNA plays an important role in allowing H. pylori to meet its purine requirements for growth.  相似文献   

17.
Helicobacter pylori (H. pylori) is a common gastric pathogen that infects approximately half of the world’s population. Infection with H. pylori can lead to diverse pathological conditions, including chronic gastritis, peptic ulcer disease, and cancer. The latter is the most severe consequence of H. pylori infection. According to epidemiological studies, gastric infection with H. pylori is the strongest known risk factor for non-cardia gastric cancer (GC), which remains one of the leading causes of cancer-related deaths worldwide. However, it still remains to be poorly understood how host-microbe interactions result in cancer development in the human stomach. Here we focus on the H. pylori bacterial factors that affect the host ubiquitin proteasome system. We investigated E3 ubiquitin ligases SIVA1 and ULF that regulate p14ARF (p19ARF in mice) tumor suppressor. ARF plays a key role in regulation of the oncogenic stress response and is frequently inhibited during GC progression. Expression of ARF, SIVA1 and ULF proteins were investigated in gastroids, H. pylori-infected mice and human gastric tissues. The role of the H. pylori type IV secretion system was assessed using various H. pylori isogenic mutants. Our studies demonstrated that H. pylori infection results in induction of ULF, decrease in SIVA1 protein levels, and subsequent ubiquitination and degradation of p14ARF tumor suppressor. Bacterial CagA protein was found to sequentially bind to SIVA1 and ULF proteins. This process is regulated by CagA protein phosphorylation at the EPIYA motifs. Downregulation of ARF protein leads to inhibition of cellular apoptosis and oncogenic stress response that may promote gastric carcinogenesis.  相似文献   

18.
Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.  相似文献   

19.
Helicobacter pylori inhabits the stomach mucosa and is a causative agent of stomach ulcer and cancer. In general, bacteriophages (phages) are strongly associated with bacterial evolution, including the development of pathogenicity. Several tailed phages have so far been reported in H. pylori. We have isolated an H. pylori phage, KHP30, and reported its genomic sequence. In this study, we examined the biological characteristics of phage KHP30. Phage KHP30 was found to be a spherical lipid-containing phage with a diameter of ca. 69 nm. Interestingly, it was stable from pH 2.5 to pH 10, suggesting that it is adapted to the highly acidic environment of the human stomach. Phage KHP30 multiplied on 63.6% of clinical H. pylori isolates. The latent period was ca. 140 min, shorter than the doubling time of H. pylori (ca. 180 min). The burst size was ca. 13, which was smaller than the burst sizes of other known tailed or spherical phages. Phage KHP30 seemed to be maintained as an episome in H. pylori strain NY43 cells, despite a predicted integrase gene in the KHP30 genomic sequence. Seven possible virion proteins of phage KHP30 were analyzed using N-terminal protein sequencing and mass spectrometry, and their genes were found to be located on its genomic DNA. The genomic organization of phage KHP30 differed from the genomic organizations in the known spherical phage families Corticoviridae and Tectiviridae. This evidence suggests that phage KHP30 is a new type of spherical phage that cannot be classified in any existing virus category.  相似文献   

20.
The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease.Common wisdom circa 1980 suggested that the stomach, with its low pH, was a sterile environment. Then, endoscopy of the stomach became common and, in 1984, pathologist Robin Warren and gastroenterologist Barry Marshall saw an extracellular, curved bacillus, often in dense sheets, lining the stomach epithelium of patients with gastritis (inflammation of the stomach) and ulcer disease [1]. Soon, the medical community understood that the gram-negative bacterium Helicobacter pylori, not stress, is the major cause of stomach inflammation, which, in some infected individuals, precedes peptic ulcer disease (10%–20%), distal gastric adenocarcinoma (1%–2%), and gastric mucosal-associated lymphoid tissue (MALT) lymphoma (<1%) [2][5]. Thus, H. pylori gained distinction as the only known bacterial carcinogen [6]. It is believed that half of the world''s population is infected with H. pylori; however, the burden of disease falls disproportionately on less-developed countries. The incidence of infection in developed countries has fallen dramatically, for unknown reasons, with a corresponding decrease in gastric cancer [7]. This public health success is tempered by the recent demonstration of an inverse relationship between H. pylori infection and esophageal adenocarcinoma, Barrett''s esophagus, and reflux esophagitis [8]. H. pylori has been with humans since our earliest days, thus it is not surprising that its relationship is that of both a commensal bacterium and a pathogen, causing some diseases and possibly protecting against others. In addition, it is genetically diverse, likely as a result of constant exposure to both environmental and immunological selection, suggesting that genetic diversification is a strategy for long-term colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号