首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of the hexose monophosphate shunt of human erythrocytes under conditions of oxidative stress has been investigated by monitoring the reduction of oxidised glutathione (GSSG) to reduced glutathione (GSH) in erythrocytes containing high levels of GSSG; 1H NMR and a biochemical assay were used to measure the changes. A reconstituted metabolic system prepared with the purified erythrocyte enzymes was used in conjunction with studies of intact cells and haemolysates to determine the dependence of the rate of GSH production on the activities of hexokinase and glucose-6-phosphate dehydrogenase. Both of these enzymes have previously been claimed to be the rate-limiting step of oxidatively stimulated flux through the hexose monophosphate shunt. The absence of a kinetic isotope effect on the rate of GSH production in these systems, when [1-2H]glucose replaced glucose as the source of reducing equivalents, showed that glucose-6-phosphate dehydrogenase activity was not a strong determinant of the flux. The dependence of the rate of GSH production on the concentration of the hexokinase inhibitors glucose 1,6-bisphosphate and glycerate 2,3-bisphosphate showed that, under conditions of oxidative stress, hexokinase was the principal determinant of flux through the shunt. Glucose 1,6-bisphosphate at the concentration present in vivo appears to be more important in limiting hexokinase activity, and thus the rate of glucose utilisation, than was previously assumed. A detailed computer model of the system was developed based on the reported kinetic parameters of the enzymes involved. A sensitivity analysis of this model predicted that the hexokinase reaction would have a sensitivity coefficient of 0.995 with respect to the maximal rate of GSH production.  相似文献   

2.
The molecular basis of the toxic properties of phenoxy herbicides in humans and animals has been insufficiently studied. In this study, damage parameters [levels of reduced glutathione (GSH) and total glutathione; activity of glutathione reductase (GR); activities of catalase (CAT) and superoxide dismutase (SOD); levels of adenine nucleotides and adenine energy charge (AEC)] were measured in human erythrocytes exposed in vitro to 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and its metabolite 2,4,5-trichlorophenol (2,4,5-TCP). Both 2,4,5-T and 2,4,5-TCP decreased the level of reduced glutathione (GSH) in erythrocytes in comparison to the control, but did not significantly change the total glutathione (2GSH + GSSG). This suggests that GSH concentration decreases concomitantly with an increase in oxidized glutathione (GSSG). 2,4,5-TCP at 100 ppm significantly decreased catalase and SOD activities. 2,4,5-T and 2,4,5-TCP did not significantly change the activity of glutathione reductase. 2,4,5-TCP decreased the level of ATP and increased the content of ADP and AMP, indicating a fall in AEC. 2,4,5-T and 2,4,5-TCP significantly changed the erythrocyte morphology. All these data are evidence of oxidative stress in erythrocytes incubated with 2,4,5-T and 2,4,5-TCP; the stress appears to be more intense in the case of 2,4,5-TCP.  相似文献   

3.
A minimal catalytic cycle for cytochrome c oxidase has been suggested, and the steady-state kinetic equation for this mechanism has been derived. This equation has been used to simulate experimental data for the pH dependence of the steady-state kinetic parameters, kcat and Km. In the simulations the rate constants for binding and dissociation of cytochrome c and for two internal electron-transfer steps have been allowed to vary, whereas fixed experimental values (for pH 7.4) have been used for the other rate constants. The results show that the dissociation of the product, ferricytochrome c, cannot be rate-limiting under all conditions, but that intramolecular electron-transfer steps also limit the rate. They also demonstrate that Km can differ considerably from the dissociation constant for the cytochrome c-oxidase complex. Published values for the rate constant for the dissociation of ferricytochrome c are too small to account for the steady-state rates. It is suggested that, at high concentrations, ferryocytochrome c transfers an electron to a cytochrome c molecule which remains bound to the oxidase. This can also explain the nonhyperbolic kinetics, which is observed at low substrate concentrations.  相似文献   

4.
Summary Reduced glutathione (GSH) levels and glutathione reductase (GR) and glutathione S-transferase (GST) activities were investigated in the erythrocytes and lymphocytes of non-dialyzed patients with varying degrees of chronic renal insufficiency, and also of patients on regular hemodialysis treatment. GSH, GR and GST levels were higher in erythrocytes and lymphocytes of examined patients as compared to their corresponding age-matched healthy controls. A correlation was found between the degree of renal insufficiency and the above parameters tested. A routine hemodialysis did not significantly affect erythrocyte and lymphocyte GSH content and activities of its associated enzymes. The increased GSH levels as well as GSH-linked enzyme activities of blood cells in uremia may be a protective mechanism for the cells due to the accumulation of toxic, oxidizing, wastes in the blood as a result of the uremic state. This view is supported by the results ofin vitro experiments, which have shown that GR and GST activities of normal human lymphocytes are increased when incubated with plasma from uremic patients.  相似文献   

5.
Effects of acute and chronic cold stress on glutathione and related enzymes in rat erythrocytes were investigated. Blood from both cold-acclimated (CA) and cold-adapted (CG) rats had significantly lower concentrations of glutathione than blood from control animals. Superoxide dismutase activity was increased significantly in CA rats and tended to rise in CG rats. Activity of glutathione peroxidase in erythrocytes was inconsistent in that it tended to increase in CA rats but decreased significantly in CG rats. The results may imply that CG rats suffered deleterious effects of hydrogen peroxide. On the other hand, there were marked decreases in glutathione peroxidase and glutathione reductase activities in acutely cold-exposed rats in conjunction with unchanged levels of glutathione. In all treatments the state of riboflavin metabolism was estimated to be adequate, since no increases were observed in the erythrocyte glutathione reductase activity coefficient.  相似文献   

6.
A simple kinetic model was developed for describing nitrite oxidation by autotrophic aerobic nitrifiers in a continuous stirred tank reactor (CSTR), in which mixed (suspended and attached) growth conditions prevail. The CSTR system was operated under conditions of constant nitrite feed concentration and varying volumetric flow rates. Experimental data from steady-state conditions in the CSTR system and from batch experiments were used for the determination of the model's kinetic parameters. Model predictions were verified against experimental data obtained under transient operating conditions, when volumetric flow rate and nitrite feed concentration disturbances were imposed on the CSTR. The presented kinetic modeling procedure is quite simple and general and therefore can also be applied to other mixed growth biological systems.  相似文献   

7.
The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, k(sol) = 4.7 x 10(-5)mol(-1)L(1)s(-1). In intact erythrocytes the rate constant for the cellular environment, k(cell), was found to be slightly larger at 8.1 x 10(-5)mol(-1)L(1)s(-1). Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 molL(-1). The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells ( approximately 1.4 molL(-1)) can cause oxidation of intracellular glutathione.  相似文献   

8.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The oxidative effects of sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs, were investigated in vitro using three types of canine erythrocytes, which are differentiated by the concentration of reduced glutathione and the composition of intracellular cations. After incubation with sodium n-propylthiosulfate, the methemoglobin concentration and Heinz body count in all three types of erythrocytes increased and a decrease in the erythrocyte reduced glutathione concentration was then observed. The erythrocytes containing high concentrations of potassium and reduced glutathione (approximately five times the normal values) were more susceptible to oxidative damage by sodium n-propylthiosulfate than were the normal canine erythrocytes. The susceptibility of the erythrocytes containing high potassium and normal reduced glutathione concentrations was intermediate between those of erythrocytes containing high concentrations of potassium and reduced glutathione and normal canine erythrocytes. In addition, the depletion of erythrocyte reduced glutathione by 1-chloro-2, 4-dinitrobenzene resulted in a marked decrease in the oxidative injury induced by sodium n-propylthiosulfate in erythrocytes containing high concentrations of potassium and reduced glutathione. The generation of superoxide in erythrocytes containing high concentrations of potassium and reduced glutathione was 4.1 times higher than that in normal canine erythrocytes when the cells were incubated with sodium n-propylthiosulfate. These observations indicate that erythrocyte reduced glutathione, which is known as an antioxidant, accelerates the oxidative damage produced by sodium n-propylthiosulfate.  相似文献   

10.
The kinetic behavior of a nonproducing hybridoma clone AFP-27-NP was investigated in continuous culture under glucose-limited conditions. A total of more than 21, 000 h of cultures were operated at dilution rates ranging from 0.01 to 0.06 h(-1). The viable cell concentrations, dead cell concentrations, and cell volumes all varied with the dilution rate. A steady-state model was developed based on the biomass concentration and the glucose concentration. The specific growth rate as a function of glucose concentration is described by a model similar to the Monod model with a threshold glucose concentration and a minimum specific growth rate incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. A death rate is included in the model which is described by an inverted Monod-type function of glucose concentration. The yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper region of specific growth rates. No maintenance term for glucose consumption was needed; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepted the specific growth rate axis at a value close to the minimum growth rate. The values for the model parameters were determined from regression analysis of the steady-state data. The model predictions and experimental results fit very well.  相似文献   

11.
I V Iama?kina 《Biofizika》1989,34(5):826-829
A mathematical model of erythrocyte thermohemolysis valid also for other types of hemolysis with S-shape kinetics is proposed. A formula is derived which, when entered into the computer programme, allows to obtain the distribution of erythrocytes according to the parameter reflecting their thermostability automatically from the experimental kinetic curve of erythrocyte thermohemolysis.  相似文献   

12.
A mathematical model was developed to analyze the leakage of phosphatidylinositol small unilamellar vesicles induced by the intermediate filament protein vimentin and its isolated N-terminal polypeptide. This model describes the kinetic and steady-state characteristics of this vesicle leakage as a direct action of protein on the lipid bilayer. Moreover, qualitative information at the molecular level can be deduced about protein-protein or protein-lipid interactions from the derived initial rate of vesicle leakage and the value of vesicle leakage at steady-state condition as a function of the protein concentration. Additionally, quantitative data on the inhibitory effect of various substances (here Ca2+ or Mg2+) can also be derived. This approach offers a possibility to compare interactions occurring within different protein-lipid systems by determining the characteristic parameters for the respective kinetic and steady-state conditions.  相似文献   

13.
A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes as measured in cell extract. Moreover, when the same model was later applied to different experimental steady-state conditions, it often exhibited unrestrained metabolite accumulation.Here we resolve this issue by showing that the results of such ab initio modeling are improved substantially by (i) including appropriate allosteric regulation and (ii) measuring the enzyme kinetic parameters under conditions that resemble the intracellular environment. The following modifications proved crucial: (i) implementation of allosteric regulation of hexokinase and pyruvate kinase, (ii) implementation of V(max) values measured under conditions that resembled the yeast cytosol, and (iii) redetermination of the kinetic parameters of glyceraldehyde-3-phosphate dehydrogenase under physiological conditions.Model predictions and experiments were compared under five different conditions of yeast growth and starvation. When either the original model was used (which lacked important allosteric regulation), or the enzyme parameters were measured under conditions that were, as usual, optimal for high enzyme activity, fructose 1,6-bisphosphate and some other glycolytic intermediates tended to accumulate to unrealistically high concentrations. Combining all adjustments yielded an accurate correspondence between model and experiments for all five steady-state and dynamic conditions. This enhances our understanding of in vivo metabolism in terms of in vitro biochemistry.  相似文献   

14.
In the paper, we present an improved method for evaluation of a compound ability to destabilize erythrocyte plasma membrane. The proposed method is based on the continuous monitoring of the light scattered by erythrocytes exposed to osmotic pressure differences. The kinetics of hemolysis depends on the plasma membrane mechanics and the extent of the osmotic stress. Generally, the osmotic pressure difference of approximately 150 mOsm is taken for measurements, as a result of the equal volume mixing with the physiological salt solutions. In this approach the hemolytic process completion is not established which may result in poor quality and reproducibility of the experimental data. In consequence, inaccurate parameters of the kinetic are determined due to the low quality fitting to the, widely used, single exponential model. In the paper we propose a new experimental protocol allowing to determine the extended set of parameters for kinetics of hemolysis. Namely, the method of the minimal osmotic pressure difference determination is proposed which ensures the completeness of the hemolytic process. This step allows improving the quality and exactness of the calculated parameters. The developed methodology was tested on two qualitatively different, biologically relevant, experiments; evaluation of the peptide effect on the plasma membrane properties and differentiating between human and rabbit erythrocytes.  相似文献   

15.
In order to determine whether the biological age of a mouse influences erythrocyte metabolism and erythrocyte aging in vivo, blood samples were collected from male C57/BL6J mice of different biological ages ranging from mature (10 months) to "very old" (37 months). In the very old mouse, compared with the mature mouse, the erythrocyte survival time was decreased, erythrocyte densities were increased, the concentrations of total free thiol and reduced glutathione, and glutathione reductase activity were decreased. Erythrocytes were separated into different density (age) groups by phthalate ester two-phase centrifugation or by albumin density-gradient centrifugation. The density-age relationship of erythrocytes was established by pulse-labelling with 59Fe in vivo and by subsequent determinations of specific radioactivity of erythrocyte fractions of different densities prepared during a chase period of 60 days. The age of erythrocytes in mice of all ages was directly related to density. Also, in older erythrocytes compared with younger erythrocytes, decreased concentrations of total free thiol and reduced glutathione, and decreased glutathione reductase activity were observed. These were the lowest in the old erythrocytes of very old mice. These results in aging erythrocytes from aging mice suggest that the glutathione status the erythrocyte may be an index of aging, not only of the cell but also of the organism.  相似文献   

16.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

17.
Colisa fasciatus , a freshwater teleost, were exposed for 90-h to 15 mg l−1 (0.79 of the96-h LC50 value) lead nitrate under static test conditions. The treatment resulted in decreased ( P≤ 0.001) erythrocyte counts, haematocrits and haemoglobin contents of the moribund fish. Toxicity of the metal was also characterized by significant ( P <0.001) acceleration in erythrocyte sedimentation rate, numerical increase in the number of immature erythrocytes in circulation, lysis and degeneration of erythrocytes, and an increase in the hepatosomatic index. Leucocyte and thrombocyte counts, the number of lymphocytes, and blood clotting times were not significantly different between experimental and control fish. Haemolytic anaemia and an overt increase of circulating immature erythrocytes can be used in monitoring lead poisoning in fish.  相似文献   

18.
Glutathione derivatives inhibit glutathione S-transferase A [cf. Biochem. J. (1975) 147, 513--522]. The steady-state kinetics of this inhibition have been investigated in detail by using S-octyglutathione, glutathione disulphide and S-(2-chloro-4-nitrophenyl)glutathione: the last compound is a product of the enzyme-catalused reaction. Interpreted in terms of generalized denotations of inhibition patterns, the compounds were found to be competitive with the substrate glutathione. Double-inhibition experiments involving simultaneous use of two inhibitors indicated exclusive binding of the inhibitors to the enzyme. The discrimination between alternative rate equations has been based on the results of weighted non-linear regression analysis. The experimental error was determined by replicate measurements and was found to increase with velocity. The established error structure was used as a basis for weighting in the regression and to construct confidence levels for the judgement of goodness-of-fit of rate equations fitted to experimental data. The results obtained support a steady-state random model for the mechanism of action of glutathione S-transferase A and exclude a number of simple kinetic models.  相似文献   

19.
A simplified one-dimensional model system was used to test the possibility that physically realistic parameters would lead to the prediction of microscopic heterogeneity of radioligand distribution in the brain and that microscopic heterogeneity of radioligand and neuroreceptor distribution could influence the macroscopically observedin vivo kinetics. The model was represented mathematically by a partial differential equation which is similar to the heat diffusion equation, but with special boundary conditions. The equation was solved analytically under the condition of negligible receptor occupancy by inversion of the Laplace transform and in the more general case of arbitrary receptor occupancy by cubic spline approximation. In simulations with physically reasonable values for rate constants and parameters, we find that significant radioligand gradients can occur. Thus, the level of radioligand in the immediate vicinity of the receptor may be substantially different from the average level in a macroscopically measured region of interest. In order to analyze the simulated data, we derived a rigorous steady-state solution, including both a statement of necessary and sufficient conditions for the validity of the steady-state approximation as well as a demonstration of the proper technique for assessing the consistency of the derived parameter with the requirements of the approximation. The radioligand heterogeneity leads to significant errors in the parameters estimated in the steady-state kinetic analysis. In particular, the pseudo first-order rate constant for radioligand-neuroreceptor association, which is often used as a measure of the total amount of neuroreceptor, is underestimated. The first-order rate constant for radioligand-neuroreceptor dissociation is also underestimated. These effects can partially account for the experimentally-observed discrepancy betweenin vivo andin vitro estimates of these kinetic parameters.  相似文献   

20.
Cells under aerobic condition are always threatened with the insult of reactive oxygen species, which are efficiently taken care of by the highly powerful antioxidant systems of the cell. The erythrocytes (RBCs) are constantly exposed to oxygen and oxidative stress but their metabolic activity is capable of reversing the injury under normal conditions. In vitro hemolysis of RBCs induced by 5, 10 and 20 mM glucose was used as a model to study the free radical induced damage of biological membranes in hyperglycemic conditions and the protection rendered by vitamin E on the same. RBCs are susceptible to oxidative damage, peroxidation of the membrane lipids, release of hemoglobin (hemolysis) and alteration in activity of antioxidant enzymes catalase and superoxide dismutase. The glucose induced oxidative stress and the protective effect of vitamin E on cellular membrane of human RBCs manifested as inhibition of membrane peroxidation and protein oxidation and restoration of activities of superoxide dismutase and catalase, was investigated.Thiobarbituric acid reactive substances are generated from decomposition of lipid peroxides and their determination gives a reliable estimate of the amount of lipid peroxides present in the membrane. Vitamin E at 18 μg/ml (normal serum level) strongly enhanced the RBC resistance to oxidative lysis leading to only 50–55% hemolysis in 24 h, whereas RBCs treated with 10 and 20 mM glucose without vitamin E leads to 70–80% hemolysis in 24 h. Levels of enzymic antioxidants catalase, superoxide dismutase and nonenzymic antioxidants glutathione showed restoration to normal levels in presence of vitamin E. The study shows that vitamin E can protect the erythrocyte membrane exposed to hyperglycemic conditions and so a superior antioxidant status of a diabetic patient may be helpful in retarding the progressive tissue damage seen in chronic diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号