首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conserved leucine residues at the 9′ positions in the M2 segments of α1 (L264) and β1 (L259) subunits of the human GABAA receptor were replaced with threonine. Normal or mutant α1 subunits were co-expressed with normal or mutant β1 subunits in Sf9 cells using the baculovirus/Sf9 expression system. Cells in which one or both subunits were mutated had a higher ``resting' chloride conductance than cells expressing wild-type α1β1 receptors. This chloride conductance was blocked by 10 mm penicillin, a recognized blocker of GABAA channels, but not by bicuculline (100 μm) or picrotoxin (100 μm) which normally inhibit the chloride current activated by GABA: nor was it potentiated by pentobarbitone (100 μm). In cells expressing wild-type β1 with mutated α1 subunits, an additional chloride current could be elicited by GABA but the rise time and decay were slower than for wild-type α1β1 receptors. In cells expressing mutated β1 subunits with wild-type or mutated α1 subunits (αβ(L9′T) and α(L9′T)β(L9′T)), no response to GABA could be elicited: this was not due to an absence of GABAA receptors in the plasmalemma because the cells bound [3H]-muscimol. It was concluded that in GABAA channels containing the L9′T mutation in the β1 subunit, GABA-binding does not cause opening of channels, and that the L9′T mutation in either or both subunits gives an open-channel state of the GABAA receptor in the absence of ligand. Received: 17 April 1996/Revised: 5 July 1996  相似文献   

2.
Abstract

We report the isolation of the genes encoding the β1 and β2 adrenergic receptors from dog genomic DNA. Sequence analysis of both genes revealed intronless open reading frames of 473 and 415 amino acid residues, receptively. Heterologous expression of both receptors in CHO cells indicated that both receptors are functionally similar to the human homologs. Comparing the dog β1 and β2 adrenergic receptors, the β1 receptor appears to bind to G proteins more tightly than the β2 receptor. Heterologously expressed receptors provide a convenient system for evaluating novel receptor agonists and antagonists.  相似文献   

3.
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.  相似文献   

4.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

5.
GABAA receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are the targets of many clinically important drugs, which modulate GABA induced chloride flux by interacting with separate and distinct allosteric binding sites. Recently, we described an allosteric modulation occurring upon binding of pyrazoloquinolinones to a novel binding site at the extracellular α+ β? interface. Here, we investigated the effect of 4-(8-methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile (the pyrazoloquinolinone LAU 177) at several αβ, αβγ and αβδ receptor subtypes. LAU 177 enhanced GABA-induced currents at all receptors investigated, and the extent of modulation depended on the type of α and β subunits present within the receptors. Whereas the presence of a γ2 subunit within αβγ2 receptors did not dramatically change LAU 177 induced modulation of GABA currents compared to αβ receptors, we observed an unexpected threefold increase in modulatory efficacy of this compound at α1β2,3δ receptors. Steric hindrance experiments as well as inhibition by the functional α+ β? site antagonist LAU 157 indicated that the effects of LAU 177 at all receptors investigated were mediated via the α+ β? interface. The stronger enhancement of GABA-induced currents by LAU 177 at α1β3δ receptors was not observed at α4,6β3δ receptors. Other experiments indicated that this enhancement of modulatory efficacy at α1β3δ receptors was not observed with another α+ β? modulator, and that the efficacy of modulation by α+ β? ligands is influenced by all subunits present in the receptor complex and by structural details of the respective ligand.  相似文献   

6.
Sequential oxidation and reduction of aryl 4, 6-O-benzylidene-β-d-glucosides with dimethyl sulfoxide-phosphorus pentoxide mixture (DMSO–P2O5) and sodium borohydride were carried out as a new means for the preparation of aryl β-d-mannopyranoside derivatives. p-Nitrophenyl 4, 6-O-benzylidene-β-d-mannopyranoside was obtained in 22% yield from the corresponding glucoside 3-O-acetate, whereas from the unprotected acetal, 4, 6-O-benzylidene acetals of the corresponding mannoside and alloside were isolated in the yields of 6.7 and 2.1%, respectively. Similarly, phenyl 4, 6-O-benzylidene β-d-mannoside, alloside, and altroside were obtained from the corresponding glucoside in 2.2, 0.8 and 2.1% yields, respectively.  相似文献   

7.
8.
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50–17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.  相似文献   

9.
Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition.  相似文献   

10.
Abstract

Five 3′,5′-di-O-acylribonucleosides were converted into the corresponding β-D-arabinofuranosyl derivatives through DMSO-oxidation followed by NaBH4-reduction and deacylation with NaOMe-MeOH.  相似文献   

11.
Sympathetic activation in a “fight or flight reaction” may put the sensory systems for hearing and balance into a state of heightened alert via β1-adrenergic receptors (β1-AR). The aim of the present study was to localize β1-AR in the gerbil inner ear by confocal immunocytochemistry, to characterize β1-AR by Western immunoblots, and to identify β1-AR pharmacologically by measurements of cAMP production. Staining for β1-AR was found in strial marginal cells, inner and outer hair cells, outer sulcus, and spiral ganglia cells of the cochlea, as well as in dark, transitional and supporting cells of the vestibular labyrinth. Receptors were characterized in microdissected inner ear tissue fractions as 55 kDa non-glycosylated species and as 160 kDa high-mannose-glycosylated complexes. Pharmacological studies using isoproterenol, ICI-118551 and CGP-20712A demonstrated β1-AR as the predominant adrenergic receptor in stria vascularis and organ of Corti. In conclusion, β1-AR are present and functional in inner ear epithelial cells that are involved in K+ cycling and auditory transduction, as well as in neuronal cells that are involved in auditory transmission.  相似文献   

12.
2’-Methoxy-6-methylflavone (2’MeO6MF) is an anxiolytic flavonoid which has been shown to display GABAA receptor (GABAAR) β2/3-subunit selectivity, a pharmacological profile similar to that of the general anaesthetic etomidate. Electrophysiological studies suggest that the full agonist action of 2’MeO6MF at α2β3γ2L GABAARs may mediate the flavonoid’s in vivo effects. However, we found variations in the relative efficacy of 2’MeO6MF (2’MeO6MF-elicited current responses normalised to the maximal GABA response) at α2β3γ2L GABAARs due to the presence of mixed receptor populations. To understand which receptor subpopulation(s) underlie the variations observed, we conducted a systematic investigation of 2’MeO6MF activity at all receptor combinations that could theoretically form (α2, β3, γ2L, α2β3, α2γ2L, β3γ2L and α2β3γ2L) in Xenopus oocytes using the two-electrode voltage clamp technique. We found that 2’MeO6MF activated non-α-containing β3γ2L receptors. In an attempt to establish the optimal conditions to express a uniform population of these receptors, we found that varying the relative amounts of β3:γ2L subunit mRNAs resulted in differences in the level of constitutive activity, the GABA concentration-response relationships, and the relative efficacy of 2’MeO6MF activation. Like 2’MeO6MF, general anaesthetics such as etomidate and propofol also showed distinct levels of relative efficacy across different injection ratios. Based on these results, we infer that β3γ2L receptors may form with different subunit stoichiometries, resulting in the complex pharmacology observed across different injection ratios. Moreover, the discovery that GABA and etomidate have direct actions at the α-lacking β3γ2L receptors raises questions about the structural requirements for their respective binding sites at GABAARs.  相似文献   

13.
γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.  相似文献   

14.
15.
Abstract

Rat C6 glioma cells have both β1- and β2-adrenergic receptors in ~ 7:3 ratio. When the cells were exposed to the β-adrenergic agonist isoproterenol, there was a rapid sequestration of up to 50% of the surface receptor population over a 30-min period as measured by the loss of binding of the hydrophilic ligand [3H] CGP-12177 to intact cells. Using the β2-selective antagonist CGP 20712A to quantify the proportion of the two subtypes, it was found that although both β1 and β2 receptors were sequestered, the latter were sequestered initially twice as fast as the former. More prolonged agonist exposure led to a down-regulation of ~ 90% of the total receptor population by 6 h as measured by the loss of binding of the more hydrophobic ligand [125I] iodocyanopindolol to cell lysates. The two subtypes, however, underwent down-regulation with similar kinetics. Treatment of the cells with agents that raise cyclic AMP levels such as cholera toxin and forskolin resulted in a slower, but still coordinated down-regulation of both subtypes. Thus, there appears to be both independent and coordinate regulation of endogenous β1-and β2-adrenergic receptors in the same cell line.  相似文献   

16.
A GABAA receptor (GABAAR) α1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused α1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual α1(AD) subunit expression on wild type GABAAR expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the α1(AD) subunit did not substitute for wild type α1 subunits on the cell surface, it reduced the surface expression of α1β2γ2 and α3β2γ2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The α1(AD) subunit reduced surface expression of α3β2γ2 receptors by a greater amount than α1β2γ2 receptors, thus altering cell surface GABAAR composition. When transfected into cultured cortical neurons, the α1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of α1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号