首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenoviral vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. For effective vaccine development it is often necessary to express or present multiple antigens to the immune system to elicit an optimal vaccine as observed preclinically with mosaic/polyvalent HIV vaccines or malaria vaccines. Due to the wide flexibility of Ad vectors they are an ideal platform for expressing large amounts of antigen and/or polyvalent mosaic antigens. Ad vectors that display antigens on their capsid surface can elicit a robust humoral immune response, the “antigen capsid-incorporation” strategy. The adenoviral hexon protein has been utilized to display peptides in the majority of vaccine strategies involving capsid incorporation. Based on our abilities to manipulate hexon HVR2 and HVR5, we sought to manipulate HVR1 in the context of HIV antigen display for the first time ever. More importantly, peptide incorporation within HVR1 was utilized in combination with other HVRs, thus creating multivalent vectors. To date this is the first report where dual antigens are displayed within one Ad hexon particle. These vectors utilize HVR1 as an incorporation site for a seven amino acid region of the HIV glycoprotein 41, in combination with six Histidine incorporation within HVR2 or HVR5. Our study illustrates that these multivalent antigen vectors are viable and can present HIV antigen as well as His6 within one Ad virion particle. Furthermore, mouse immunizations with these vectors demonstrate that these vectors can elicit a HIV and His6 epitope-specific humoral immune response.  相似文献   

2.
传统腺病毒载体的局限性使得外源抗原以衣壳融合的方式在腺病毒载体上的应用越来越广泛,但是在3型腺病毒(Adenovirus serotype 3, Ad3)载体六邻体高变区(Hypervariable region,HVR)改造过程中经常出现无法成功拯救病毒的情况,本研究主要根据对生物信息学预测的HVR1,HVR2,HVR5,HVR7中某些氨基酸进行删减或保留,通过构建重组Ad3载体pBRAdΔE3GFP-mHexon,转染AD293细胞,验证Ad3载体在六邻体高变区的这些氨基酸有所改动时对病毒拯救的影响。由此获得高变区HVR1、HVR2、HVR5和HVR7在基因工程改造中应该保留的氨基酸的数据,这一研究结果为人3型腺病毒六邻体融合表达策略提供了操作依据,也为人3型腺病毒六邻体表达外源抗原表位,作为多价疫苗载体展示平台的应用奠定了基础。  相似文献   

3.
Adenoviral (Ad) vectors show promise as platforms for vaccine applications against infectious diseases including HIV. However, the requirements for eliciting protective neutralizing antibody and cellular immune responses against HIV remain a major challenge. In a novel approach to generate 2F5- and 4E10-like antibodies, we engineered an Ad vector with the HIV membrane proximal ectodomain region (MPER) epitope displayed on the hypervariable region 2 (HVR2) of the viral hexon capsid, instead of expressed as a transgene. The structure and flexibility of MPER epitopes, and the structural context of these epitopes within viral vectors, play important roles in the induced host immune responses. In this regard, understanding the critical factors for epitope presentation would facilitate optimization strategies for developing viral vaccine vectors. Therefore we undertook a cryoEM structural study of this Ad vector, which was previously shown to elicit MPER-specific humoral immune responses. A subnanometer resolution cryoEM structure was analyzed with guided molecular dynamics simulations. Due to the arrangement of hexons within the Ad capsid, there are twelve unique environments for the inserted peptide that lead to a variety of conformations for MPER, including individual α-helices, interacting α-helices, and partially extended forms. This finding is consistent with the known conformational flexibility of MPER. The presence of an extended form, or an induced extended form, is supported by interaction of this vector with the human HIV monoclonal antibody 2F5, which recognizes 14 extended amino acids within MPER. These results demonstrate that the Ad capsid influences epitope structure, flexibility and accessibility, all of which affect the host immune response. In summary, this cryoEM structural study provided a means to visualize an epitope presented on an engineered viral vector and suggested modifications for the next generation of Ad vectors with capsid-incorporated HIV epitopes.  相似文献   

4.
Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines.  相似文献   

5.
X Tian  X Su  X Li  H Li  T Li  Z Zhou  T Zhong  R Zhou 《PloS one》2012,7(7):e41381
Enterovirus 71 (EV71) is responsible for hand, foot and mouth disease with high mortality among children. Various neutralizing B cell epitopes of EV71 have been identified as potential vaccine candidates. Capsid-incorporation of antigens into adenovirus (Ad) has been developed for a novel vaccine approach. We constructed Ad3-based EV71 vaccine vectors by incorporating a neutralizing epitope SP70 containing 15 amino acids derived from capsid protein VP1 of EV71 within the different surface-exposed domains of the capsid protein hexon of Ad3EGFP, a recombinant adenovirus type 3 (Ad3) expressing enhanced green fluorescence protein. Thermostability and growth kinetic assays suggested that the SP70 epitope incorporation into hypervariable region (HVR1, HVR2, or HVR7) of the hexon did not affect Ad fitness. The SP70 epitopes were thought to be exposed on all hexon-modified intact virion surfaces. Repeated administration of BALB/c mice with the modified Ads resulted in boosting of the anti-SP70 humoral immune response. Importantly, the modified Ads immunization of mother mice conferred protection in vivo to neonatal mice against the lethal EV71 challenge, and the modified Ads-immunized mice serum also conferred passive protection against the lethal challenge in newborn mice. Compared with the recombinant GST-fused SP70 protein immunization, immunization with the Ads containing SP70 in HVR1 or HVR2 elicited higher SP70-specific IgG titers, higher neutralization titers, and conferred more effective protection to neonatal mice. Thus, this study provides valuable information for hexon-modified Ad3 vector development as a promising EV71 vaccine candidate and as an epitope-delivering vehicle for other pathogens.  相似文献   

6.
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.  相似文献   

7.
The generation of monoclonal antibodies (MAbs) by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5) of adenovirus type 7 (HAdv-7) was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA) analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.  相似文献   

8.
Adenovirus type 5 (Ad5) is one of the most promising vectors for gene therapy applications. Genetic engineering of Ad5 capsid proteins has been employed to redirect vector tropism, to enhance infectivity, or to circumvent preexisting host immunity. As the most abundant capsid protein, hexon modification is particularly attractive. However, genetic modification of hexon often results in failure of rescuing viable viruses. Since hypervariable regions (HVRs) are nonconserved among hexons of different serotypes, we investigated whether the HVRs could be used for genetic modification of hexon by incorporating oligonucleotides encoding six histidine residues (His6) into different HVRs in the Ad5 genome. The modified viruses were successfully rescued, and the yields of viral production were similar to that of unmodified Ad5. A thermostability assay suggested the modified viruses were stable. The His6 epitopes were expressed in all modified hexon proteins as assessed by Western blotting assay, although the intensity of the reactive bands varied. In addition, we examined the binding activity of anti-His tag antibody to the intact virions with the enzyme-linked immunosorbent assay and found the His6 epitopes incorporated in HVR2 and HVR5 could bind to anti-His tag antibody. This suggested the His6 epitopes in HVR2 and HVR5 were exposed on virion surfaces. Finally, we examined the infectivities of the modified Ad vectors. The His6 epitopes did not affect the native infectivity of Ad5 vectors. In addition, the His6 epitopes did not appear to mediate His6-dependent viral infection, as assessed in two His6 artificial receptor systems. Our study provided valuable information for studies involving hexon modification.  相似文献   

9.
On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo.  相似文献   

10.
Bacteriophage T4 capsid is an elongated icosahedron decorated with 155 copies of Hoc, a nonessential highly antigenic outer capsid protein. One Hoc monomer is present in the center of each major capsid protein (gp23*) hexon. We describe an in vitro assembly system which allows display of HIV antigens, p24-gag, Nef, and an engineered gp41 C-peptide trimer, on phage T4 capsid surface through Hoc-capsid interactions. In-frame fusions were constructed by splicing the human immunodeficiency virus (HIV) genes to the 5' or 3' end of the Hoc gene. The Hoc fusion proteins were expressed, purified, and displayed on hoc(-) phage particles in a defined in vitro system. Single or multiple antigens were efficiently displayed, leading to saturation of all available capsid binding sites. The displayed p24 was highly immunogenic in mice in the absence of any external adjuvant, eliciting strong p24-specific antibodies, as well as Th1 and Th2 cellular responses with a bias toward the Th2 response. The phage T4 system offers new direction and insights for HIV vaccine development with the potential to increase the breadth of both cellular and humoral immune responses.  相似文献   

11.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   

12.

Background

Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.

Methodology/Principal Findings

In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8+ and CD8 T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.

Conclusion/Significance

The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.  相似文献   

13.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.  相似文献   

14.

Background

Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.

Methodology/Principal Findings

The “antigen capsid-incorporation” strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus'' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5) vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83). This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.

Conclusions/Significance

This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes. Taken together, these novel results show that the recombinant Ad5 presenting T. cruzi gp83 antigen is a useful candidate for the development of a vaccine against Chagas disease.  相似文献   

15.
Hypervariable region 5 (HVR5) is a hydrophilic, serotypically nonconserved loop of the hexon monomer which extrudes from the adenovirus (Ad) capsid. We have replaced the HVR5 sequence of Ad5 with that of heterologous peptides and studied their effects on virus viability and peptide accessibility. A poliovirus model epitope was first inserted in a series of nine "isogenic" viruses that differed in their flanking spacers. Whereas virus productivity was not profoundly altered by any of these modifications, immunoprecipitation experiments under nondenaturing conditions demonstrated that epitope recognition by its cognate monoclonal antibody (C3 MAb) was strongly linker dependent and correlated perfectly with the ability of C3 MAb to inhibit transgene delivery and expression. An alphav-specific ligand (DCRGDCF) was then inserted in a suitable linker context to investigate whether hexon-modified capsids would enhance the transduction of cells displaying limiting amounts of the virus attachment receptors. Interestingly, although hexon has never been implicated in Ad entry, the modified virus significantly increased the transduction of human vascular smooth muscle cells in vitro. Competition experiments with 293 cells saturated with recombinant knob further indicated that the hexon-modified virus could use an additional, knob-independent pathway for entry. We concluded that genetic engineering of the Ad5 hexon monomer constitutes a novel and feasible approach to equip the virus with additional targeting ligands.  相似文献   

16.
The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.  相似文献   

17.
Six female rhesus macaques were immunized orally and intranasally at 0 weeks and intratracheally at 12 weeks with an adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus SIVsm env recombinant and at 24 and 36 weeks with native SIVmac251 gp120 in Syntex adjuvant. Four macaques received the Ad5hr vector and adjuvant alone; two additional controls were naive. In vivo replication of the Ad5hr wild-type and recombinant vectors occurred with detection of Ad5 DNA in stool samples and/or nasal secretions in all macaques and increases in Ad5 neutralizing antibody in 9 of 10 macaques following Ad administrations. SIV-specific neutralizing antibodies appeared after the second recombinant immunization and rose to titers > 10,000 following the second subunit boost. Immunoglobulin G (IgG) and IgA antibodies able to bind gp120 developed in nasal and rectal secretions, and SIV-specific IgGs were also observed in vaginal secretions and saliva. T-cell proliferative responses to SIV gp140 and T-helper epitopes were sporadically detected in all immunized macaques. Following vaginal challenge with SIVmac251, transient or persistent infection resulted in both immunized and control monkeys. The mean viral burden in persistently infected immunized macaques was significantly decreased in the primary infection period compared to that of control macaques. These results establish in vivo use of the Ad5hr vector, which overcomes the host range restriction of human Ads for rhesus macaques, thereby providing a new model for evaluation of Ad-based vaccines. In addition, they show that a vaccine regimen using the Ad5hr-SIV env recombinant and gp120 subunit induces strong humoral, cellular, and mucosal immunity in rhesus macaques. The reduced viral burden achieved solely with an env-based vaccine supports further development of Ad-based vaccines comprising additional viral components for immune therapy and AIDS vaccine development.  相似文献   

18.
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4+ T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.Adenoviruses have been a focus of interest as vaccine vectors for more than a decade and have been tested in various preclinical and clinical studies for vaccination against viral and bacterial infections (reviewed in reference 38). This interest is based on the ability of adenoviral vectors to induce high antibody titers and robust cytotoxic T-lymphocyte (CTL) responses and on the high immunogenicity of the vector, which might have an adjuvant effect on vaccination (17). Adenoviral vectors have also been extensively evaluated for immunization against HIV (reviewed in reference 1), where they were used either alone or in combination with plasmid DNA or protein in prime-boost immunizations. However, vaccination with adenoviral vectors against HIV showed no effectiveness in a large phase IIb study (4), but it is conceivable that the observed lack of effectiveness was due to the choice of vaccine antigen rather than the vector itself, as the vaccine relied exclusively on the induction of CTL responses, and the outcome was unexpected given previous results from studies in nonhuman primates (33, 42). The findings of the phase IIb study brought about a shift of focus from the CTL response to a more balanced immune response, including neutralizing antibodies, that is now expected to be necessary for protection from HIV infection.Apart from adenoviral vectors that encode vaccine antigens, there have also been approaches to modify adenoviral capsid proteins to include antigenic epitopes. These were mostly inserted into external loops of the hexon protein (5, 22, 25, 26, 43), which is the main component of the adenovirus capsid, but also other components of the capsid, such as fiber, protein IX, and penton base, have been evaluated (22). These studies showed that incorporation of single epitopes into capsid proteins of adenovirus leads to induction of antibody and CD4+ T-cell responses, suggesting that incorporation of epitopes into the adenovirus capsid is a useful tool for epitope-based vaccination.Fusion of a polylysine sequence or an arginine-glycine-aspartic acid motif to adenovirus pIX has been shown to be a tool for redirection of adenovirus tropism to heparan sulfate and αvβ integrins, respectively (9, 41). By fusing green fluorescent protein and luciferase to the C terminus of pIX, it was shown that relatively large proteins can be displayed on the adenovirus capsid while maintaining the protein''s conformation and function as well as virion integrity (24, 28).Here we describe a novel vaccination approach that combines genetic and protein vaccination by using adenoviral vectors not only as gene expression vectors but also as nanoparticle carriers for a vaccine antigen to improve the vaccination efficiency through enhanced induction of antibodies. Display of the vaccine antigen on the adenovirus capsid was achieved by fusion of the antigen to the C terminus of the adenovirus capsid protein pIX. It was shown before that the presentation of antigens in ordered arrays leads to improved antibody responses by cross-linking of B-cell receptors (13). As the adenoviral capsid is highly structured, we hypothesized that fusion to pIX would result in an ordered display of the antigen, presumably facilitating antibody induction.We evaluated this vaccine approach using the Friend virus (FV) infection model. FV is an immunosuppressive retroviral complex that consists of Friend murine leukemia virus (F-MuLV) and the replication-deficient, F-MuLV-dependent spleen focus-forming virus. FV infection of susceptible mice induces rapid polyclonal erythroblast proliferation, which leads to splenic enlargement and erythroleukemia and takes a lethal course also in adult mice (14). Protection from FV infection has been shown to require complex immune responses involving antibodies as well as CD4+ and CD8+ T cells (7). FV is regarded as a useful retrovirus infection model because basic requirements for vaccine protection seem to be similar for FV and HIV infection (8). We demonstrated previously that the FV model is suitable to evaluate and improve adenoviral vectors for antiretroviral vaccination (2), as we showed that a heterologous prime-boost vaccination with adenovirus type 5 (Ad5) and fiber chimeric Ad5F35 vectors led to better protection from FV infection than homologous vaccination, which correlated with improved induction of neutralizing antibodies.For vaccination with expression/display vectors against FV we constructed a fusion protein of the adenoviral capsid protein pIX and the F-MuLV envelope protein gp70 and produced adenoviral vectors expressing the pIX-gp70 fusion protein, which was incorporated into the viral capsid. We vaccinated FV-susceptible CB6F1 hybrid mice with antigen expression/display vectors or with conventional antigen-expressing adenoviral vectors and analyzed the protection conferred by these two vaccines. Having demonstrated that the expression/display vector leads to better protection of mice from FV challenge, we constructed a panel of expression/display vectors displaying different fusion proteins containing F-MuLV Env or Gag in order to elucidate the underlying immunological mechanisms of the improved protection conferred by the adenoviral expression/display vectors.  相似文献   

19.
This study has used the strategy of gene replacement to characterize the contribution of the adenovirus (Ad) capsid protein hexon to serotype definition. By replacing the Ad type 5 (Ad5) hexon gene with sequences from Ad2, we have changed the type specificity of the chimeric virus. The type-determining epitopes are primarily associated with loop 1 of hexon and, to a much lesser degree, with loop 2. In spite of the serotype distinctiveness of the chimeric hexon viruses, epitope similarity between the vectors resulted in a low level of cross-reactive neutralizing antibody, which in combination with activated cellular and innate arms of the immune system is sufficient to suppress gene transduction following readministration in vivo.  相似文献   

20.
In the search of strategies of presentation of heterologous antigens to elicit humoral or cellular immune responses that modulate and properly potentiate each type of response, researchers have been studying baculovirus (BV) as vaccine vectors with promising results. For some years, several research groups explored different antigen presentation approaches using the BV AcNPV by expressing polypeptides on the surface of budded virions or by de novo synthesis of heterologous antigens by transduction of mammalian cells. In the case of expression on the surface of budded virions, for example, researchers have expressed polypeptides in peplomers as GP64 glycoprotein fusions or distributed throughout the entire surface by fusions to portions of the G protein of vesicular stomatitis virus, VSV. Recently, our group developed the strategy of cross-presentation of antigens by fusions of GP64 to the capsid protein VP39 (capsid display) for the generation of cytotoxic responses. While the different strategies showed to be effective in raising immune responses, the individuality of each analysis makes difficult the comparison of the results. Here, by comparing the different strategies, we show that localization of the model antigen ovalbumin (OVA) strongly determined the quality and intensity of the adaptive response to the heterologous antigen. Furthermore, surface display favored humoral responses, whereas capsid display favored cytotoxic responses. Finally, capsid display showed a much more efficient strategy to activate CD8-mediated responses than transduction. The incorporation of adjuvants in baculovirus formulations dramatically diminished the immunostimulatory properties of baculovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号