首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Shiga toxin (Stx) is composed of an A-moiety that inhibits protein synthesis after translocation into the cytosol, and a B-moiety that binds to Gb3 at the cell surface and mediates endocytosis of the toxin. After endocytosis, Stx is transported retrogradely to the endoplasmic reticulum, and then the A-fragment enters the cytosol. In this study, we have investigated whether toxin-induced signaling is involved in its entry. Stx was found to activate Syk and induce rapid tyrosine phosphorylation of several proteins, one protein being clathrin heavy chain. Toxin-induced clathrin phosphorylation required Syk activity, and in cells overexpressing Syk, a complex containing clathrin and Syk could be demonstrated. Depletion of Syk by small interfering RNA, expression of a dominant negative Syk mutant (Syk KD), or treatment with the Syk inhibitor piceatannol inhibited not only Stx-induced clathrin phosphorylation but also endocytosis of the toxin. Also, Golgi transport of Stx was inhibited under all these conditions. In conclusion, our data suggest that Stx regulates its entry into target cells.  相似文献   

2.
Shiga toxin (Stx) is a bacterial toxin that binds to its receptor Gb3 at the plasma membrane. It is taken up by endocytosis and transported retrogradely via the Golgi apparatus to the endoplasmic reticulum. The toxin is then translocated to the cytosol where it exerts its toxic effect. We have previously shown that phosphorylation of clathrin heavy chain (CHC) is an early event following Stx binding to HeLa cells, and that this requires the activity of the tyrosine kinase Syk. Here, we have investigated this event in more detail in the B lymphoid cell line Ramos, which expresses high endogenous levels of both Syk and Gb3. We report that efficient endocytosis of Stx in Ramos cells requires Syk activity and that Syk is recruited to the uptake site of Stx. Furthermore, in response to Stx treatment, CHC and Syk were rapidly phosphorylated in a Src family kinase dependent manner at Y1477 and Y352, respectively. We show that these phosphorylated residues act as binding sites for the direct interaction between Syk and CHC. Interestingly, Syk–CHC complex formation could be induced by both Stx and B cell receptor stimulation.  相似文献   

3.
Human rhinovirus (HRV) causes the common cold. The most common acute infection in humans, HRV is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease because of its ability to exacerbate airway inflammation by altering epithelial cell biology upon binding to its receptor, ICAM-1. ICAM-1 regulates not only viral entry and replication but also signaling pathways that lead to inflammatory mediator production. We recently demonstrated the Syk tyrosine kinase to be an important mediator of HRV-ICAM-1 signaling: Syk regulates replication-independent p38 MAPK activation and IL-8 expression. In leukocytes, Syk regulates receptor-mediated internalization via PI3K. Although PI3K has been shown to regulate HRV-induced IL-8 expression and clathrin-mediated endocytosis of HRV, the role of airway epithelial Syk in this signaling pathway is not known. We postulated that Syk regulates PI3K activation and HRV endocytosis in the airway epithelium. Using confocal microscopy and immunoprecipitation, we demonstrated recruitment of the normally cytosolic Syk to the plasma membrane upon HRV16-ICAM-1 binding, along with Syk-clathrin coassociation. Subsequent incubation at 37 degrees C to permit internalization revealed redistribution of Syk to punctate structures resembling endosomes and colocalization with HRV16. Internalized HRV was not detected in cells overexpressing the kinase inactive Syk(K396R) mutant, indicating that kinase activity was necessary for endocytosis. HRV-induced PI3K activation was dependent on Syk; Syk knockdown by small interfering RNA significantly decreased phosphorylation of the PI3K substrate Akt. Together, these data reveal Syk to be an important mediator of HRV endocytosis and HRV-induced PI3K activation.  相似文献   

4.
Most viruses enter cells via receptor-mediated endocytosis. However, the entry mechanisms used by many of them remain unclear. Also largely unknown is the way in which viruses are targeted to cellular endocytic machinery. We have studied the entry mechanisms of influenza viruses by tracking the interaction of single viruses with cellular endocytic structures in real time using fluorescence microscopy. Our results show that influenza can exploit clathrin-mediated and clathrin- and caveolin-independent endocytic pathways in parallel, both pathways leading to viral fusion with similar efficiency. Remarkably, viruses taking the clathrin-mediated pathway enter cells via the de novo formation of clathrin-coated pits (CCPs) at viral-binding sites. CCP formation at these sites is much faster than elsewhere on the cell surface, suggesting a virus-induced CCP formation mechanism that may be commonly exploited by many other types of viruses.  相似文献   

5.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

6.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   

7.
Clathrin-mediated endocytosis is a fundamental cellular process conserved from yeast to mammals and is an important endocytic route for the internalization of many specific cargos, including activated growth factor receptors. Here we examined changes in tyrosine phosphorylation, a representative output of growth factor receptor signaling, in cells in which endocytic clathrin-coated pits are frozen at a deeply invaginated state, that is, cells that lack dynamin (fibroblasts from dynamin 1, dynamin 2 double conditional knockout mice). The major change observed in these cells relative to wild-type cells was an increase in the phosphorylation state, and thus activation, of activated Cdc42-associated kinase (Ack), a nonreceptor tyrosine kinase. Ack is concentrated at clathrin-coated pits, and binds clathrin heavy chain via two clathrin boxes. RNA interference-based approaches and pharmacological manipulations further demonstrated that the phosphorylation of Ack requires both clathrin assembly into endocytic clathrin-coated pits and active Cdc42. These findings reveal a link between progression of clathrin-coated pits to endocytic vesicles and an activation-deactivation cycle of Ack.  相似文献   

8.
Endocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wild-type Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and endocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.  相似文献   

9.
In addition to endocytosing molecules via clathrin-coated pits, cells also internalize membrane and fluid by a clathrin-independent endocytic mechanism. In this article we search for the equivalent of clathrin-coated pits in clathrin-independent endocytosis, and discuss some pitfalls in the interpretation of electron micrographs. We also discuss how the early steps in clathrin-independent endocytosis might be analysed morphologically, and we argue that caveolae are not involved in clathrin-independent endocytosis.  相似文献   

10.
Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intracellular Stx transport. We demonstrate that transport of Stx to the Golgi apparatus is dependent on the mitogen-activated protein kinase p38. Treatment of cells with chemical inhibitors or small interfering RNA targeting p38 inhibited Stx transport to the Golgi and reduced Stx toxicity. This p38 dependence is specific to Stx, because transport of the related toxin ricin was not affected by p38 inhibition. Stx rapidly activated p38, and recruited it to early endosomes in a Ca(2+)-dependent manner. Furthermore, agonist-induced oscillations in cytosolic Ca(2+) levels were inhibited upon Stx stimulation, possibly reflecting Stx-dependent local alterations in cytosolic Ca(2+) levels. Intracellular transport of Stx is Ca(2+) dependent, and we provide evidence that Stx activates a signaling cascade involving cross talk between Ca(2+) and p38, to regulate its trafficking to the Golgi apparatus.  相似文献   

11.
Actin polymerization plays a critical role in clathrin-mediated endocytosis in many cell types, but how polymerization is regulated is not known. Hip1R may negatively regulate actin assembly during endocytosis because its depletion increases actin assembly at endocytic sites. Here, we show that the C-terminal proline-rich domain of Hip1R binds to the SH3 domain of cortactin, a protein that binds to dynamin, actin filaments and the Arp2/3 complex. We demonstrate that Hip1R deleted for the cortactin-binding site loses its ability to rescue fully the formation of abnormal actin structures at endocytic sites induced by Hip1R siRNA. To determine when this complex might function during endocytosis, we performed live cell imaging. The maximum in vivo recruitment of Hip1R, clathrin and cortactin to endocytic sites was coincident, and all three proteins disappeared together upon formation of a clathrin-coated vesicle. Finally, we showed that Hip1R inhibits actin assembly by forming a complex with cortactin that blocks actin filament barbed end elongation.  相似文献   

12.
Guo CJ  Liu D  Wu YY  Yang XB  Yang LS  Mi S  Huang YX  Luo YW  Jia KT  Liu ZY  Chen WJ  Weng SP  Yu XQ  He JG 《Journal of virology》2011,85(13):6416-6426
Tiger frog virus (TFV), in the genus Ranavirus of the family Iridoviridae, causes high mortality of cultured tiger frog tadpoles in China. To explore the cellular entry mechanism of TFV, HepG2 cells were treated with drugs that inhibit the main endocytic pathways. We observed that TFV entry was inhibited by NH(4)Cl, chloroquine, and bafilomycin, which can all elevate the pH of acidic organelles. In contrast, TFV entry was not influenced by chlorpromazine or overexpression of a dominant-negative form of Esp15, which inhibit the assembly of clathrin-coated pits. These results suggested that TFV entry was not associated with clathrin-mediated endocytosis, but was related to the pH of acidic organelles. Subsequently, we found that endocytosis of TFV was dependent on membrane cholesterol and was inhibited by the caveolin-1 scaffolding domain peptide. Dynamin and actin were also required for TFV entry. In addition, TFV virions colocalized with the cholera toxin subunit B, indicating that TFV enters as caveola-internalized cargo into the Golgi complex. Taken together, our results demonstrated that TFV entry occurs by caveola-mediated endocytosis with a pH-dependent step. This atypical caveola-mediated endocytosis is different from the clathrin-mediated endocytosis of frog virus 3 (FV3) by BHK cells, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection in lower vertebrates.  相似文献   

13.
Kim Y  Park J  Song WJ  Chang S 《Neuro-Signals》2010,18(3):164-172
Trisomy 21-linked Dyrk1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) overexpression is implicated in pathogenic mechanisms underlying mental retardation in Down syndrome (DS). It is known to phosphorylate multiple substrates including endocytic proteins in vitro, but the functional consequence of Dyrk1A-mediated phosphorylation on endocytosis has never been investigated. Here, we show that overexpression of Dyrk1A causes defects in clathrin-mediated endocytosis and specifically, in the recruitment of endocytic proteins to clathrin-coated pits in fibroblasts. Synaptic vesicle endocytosis also significantly slowed down as a result of Dyrk1A overexpression in cultured hippocampal neurons. These effects are dependent on Dyrk1A kinase activity. The inhibitory effect of Dyrk1A on synaptic vesicle endocytosis was confirmed in neuronal cultures derived from transgenic mice overexpressing Dyrk1A at levels found in DS. Pharmacological blockade of Dyrk1A with epigallocatechin gallate rescued the endocytic phenotypes found in transgenic neurons. Together, our results suggest that aberrant Dyrk1A-mediated phosphorylation of the endocytic machinery perturbs synaptic vesicle endocytosis, which may contribute to synaptic dysfunctions and cognitive deficits associated with DS.  相似文献   

14.
15.
Antigen binding to the B-cell receptor (BCR) induces multiple signaling cascades that ultimately lead to B lymphocyte activation. In addition, the BCR regulates the key trafficking events that allow the antigen to reach endocytic compartments devoted to antigen processing, i.e., that are enriched for major histocompatibility factor class II (MHC II) and accessory molecules such as H2-DM. Here, we analyze the role in antigen processing and presentation of the tyrosine kinase Syk, which is activated upon BCR engagement. We show that convergence of MHC II- and H2-DM-containing compartments with the vesicles that transport BCR-uptaken antigens is impaired in cells lacking Syk activity. This defect in endocytic trafficking compromises the ability of Syk-deficient cells to form MHC II-peptide complexes from BCR-internalized antigens. Altered endocytic trafficking is associated to a failure of Syk-deficient cells to properly reorganize their actin cytoskeleton in response to BCR engagement. We propose that, by modulating the actin dynamics induced upon BCR stimulation, Syk regulates the positioning and transport of the vesicles that carry the molecules required for antigen processing and presentation.  相似文献   

16.
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.  相似文献   

17.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

18.
Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t(1/2) approximately 5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.  相似文献   

19.
Transmembrane proteins destined to endosomes are selectively accumulated in clathrin-coated pits at the plasma membrane and rapidly internalized in clathrin-coated vesicles. The recognition of specific sequence motifs in transmembrane cargo by coated-pit proteins confers specificity on the endocytic process. Interaction of membrane cargo with the clathrin adaptor protein complex AP-2 is the major mechanism of cargo sorting into coated pits in mammalian cells. Recent studies have revealed a variety of alternative mechanisms of cargo recruitment involving additional adaptor proteins. These alternative mechanisms appear to be particularly important during clathrin-mediated endocytosis of signaling receptors.  相似文献   

20.
Liu H  Liu Y  Liu S  Pang DW  Xiao G 《Journal of virology》2011,85(13):6252-6262
Infectious hematopoietic necrosis virus (IHNV) is an important fish pathogen that infects both wild and cultured salmonids. As a species of the genus Novirhabdovirus, IHNV is a valuable model system for exploring the host entry mechanisms of rhabdoviruses. In this study, quantum dots (QDs) were used as fluorescent labels for sensitive, long-term tracking of IHNV entry. Using live-cell fluorescence microscopy, we found that IHNV is internalized through clathrin-coated pits after the virus binds to host cell membranes. Pretreatment of host cells with chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and clathrin light chain (LCa) depletion using RNA interference both resulted in a marked reduction in viral entry. We also visualized transport of the virus via the cytoskeleton (i.e., actin filaments and microtubules) in real time. Actin polymerization is involved in the transport of endocytic vesicles into the cytosol, whereas microtubules are required for the trafficking of clathrin-coated vesicles to early endosomes, late endosomes, and lysosomes. Disrupting the host cell cytoskeleton with cytochalasin D or nocodazole significantly impaired IHNV infectivity. Furthermore, infection was significantly affected by pretreating the host cells with bafilomycin A1, a compound that inhibits the acidification of endosomes and lysosomes. Strong colocalizations of IHNV with endosomes indicated that the virus is internalized into these membrane-bound compartments. This is the first report in which QD labeling is used to visualize the dynamic interactions between viruses and endocytic structures; the results presented demonstrate that IHNV enters host cells via clathrin-mediated endocytic, cytoskeleton-dependent, and low-pH-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号