首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another''s body temperature results in a corresponding temperature change in the observer.

Methods

Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors'' hand in front of the water were also shown. Temperature of participant observers'' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor''s hand × observer''s hand).

Results

Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p<0.001. Participants'' own hands also showed a significant temperature-dependent effect: hands were significantly colder when observing cold vs. warm videos F(1,34) = 13.83, p = 0.001 with post-hoc t-test demonstrating a significant reduction in participants'' own left (t(35) = −3.54, p = 0.001) and right (t(35) = −2.33, p = 0.026) hand temperature during observation of cold videos but no change to warm videos (p>0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy.

Conclusions

We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation.  相似文献   

2.
《Current biology : CB》2020,30(12):2275-2288.e5
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
6.
7.
The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K2P), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K2P channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.  相似文献   

8.
The experiments were conducted with Cucumis sativus L., Triticum aestivum L., Brassica capitata, Solanum tuberosum, Zea mays L. and Pisum sativum L. Temperature drop increased cold resistance in all studied species. Level of cold resistance under the drop treatments was much higher than under the constant low temperature. It remained at a higher level for a longer period during de-acclimation. It is concluded that DROP technology is a good way for successful transplantation of greenhouse agricultural and bedding plants in early spring.  相似文献   

9.
10.
Descendants of two Colorado, U.S.A., populations of D. pseudoobscura, Boulder and La Foret, were exposed to +2 degrees and -2 degrees . In third instar larvae from Boulder AR and PP third chromosome gene arrangements survived better than TL and others, while the reverse situation occurred for La Foret. Deleterious dominant effects were observed for AR from La Foret. In adults from Boulder there was a trend towards greater survival for AR and PP than for other gene arrangements, while AR from La Foret showed relatively poor cold resistance. Survival of Boulder and La Foret flies, and their interpopulation hybrid, was determined after exposure to -2 degrees at two humidities. Order of survival of developmental stages was: adults > third instar larvae > mixture of first and second instar larvae. Adults survived better at low humidity, while larvae survived better at high humidity. Boulder adults and larvae survived better than those from La Foret. Advantage in survival of hybrids over the midparent ranged from 23% to 138%. Hybrid advantage over the higher parent ranged from 5% to 111%. Order of expression of heterosis was: mixture of first and second instar larvae > third instar larvae > adults. Relation of all results to the chromosomal polymorphisms at Boulder (seasonally constant) and La Foret (seasonally cyclic) is discussed.  相似文献   

11.
Cold denaturation is an intriguing phenomenon in protein denaturation for elucidating protein accessible surface area (ASA). Compared to the impact of protein surface, the importance of protein-water interactions in cold denaturation may be ruled out significantly. Here, based on the ASA, we have defined a new factor, the surface stability factor (SSF). From the SSF, in combination with the cold denaturation temperature (T(g')) or temperature at DeltaS = 0 (T(s)) of a given protein, one can predict the percent of hydrophobic surface area (H), percent of total surface there on positive and negative charge sum (effective charge) be zero (C), percent of patches hydrophobicity (HP) and others critical surface parameters without any need to the crystallographic data.  相似文献   

12.
Different strategies for cooling the body prior to or during physical exercise have been shown to improve prolonged performance. Because of ethical and methodological issues, no studies conducted in humans have evaluated the changes in brain temperature promoted by cooling strategies. Therefore, our first aim sought to measure the hypothalamic temperature (Thyp) of rats subjected to treadmill running in a cold environment. Moreover, evidence suggests that Thyp and abdominal temperature (Tabd) are regulated by different physiological mechanisms. Thus, this study also investigated the dynamics of exercise-induced changes in Thyp and Tabd at two ambient temperatures: 25°C (temperate environment) and 12°C (cold). Adult male Wistar rats were used in these experiments. The rats were implanted with a guide cannula in the hypothalamus and a temperature sensor in the abdominal cavity. After recovery from this surgery, the rats were familiarized with running on a treadmill and were then subjected to the two experimental trials: constant-speed running (20 m/min) at 12°C and 25°C. Both Thyp and Tabd increased during exercise at 25°C. In contrast, Thyp and Tabd remained unchanged during fatiguing exercise at 12°C. The temperature differential (i.e., Thyp - Tabd) increased during the initial min of running at 25°C and thereafter decreased toward pre-exercise values. Interestingly, external cooling prevented this early increase in the temperature differential from the 2nd to the 8th min of running. In addition, the time until volitional fatigue was higher during the constant exercise at 12°C compared with 25°C. Together, our results indicate that Thyp and Tabd are regulated by different mechanisms in running rats and that external cooling affected the relationship between both temperature indexes observed during exercise without environmental thermal stress. Our data also suggest that attenuated hypothalamic hyperthermia may contribute to improved performance in cold environments.  相似文献   

13.
14.
测定冷藏蔬菜呼吸速率时的温度探讨   总被引:7,自引:0,他引:7  
在冷藏温度下测定的呼吸速率与将冷藏蔬菜置于室温下立即测定或置于室温下1h后测定的呼吸速率有显著差异。低温下贮藏的蔬菜在室温下测定呼吸速率的结果不能真实地反映贮藏状态下的呼吸速率。冷藏蔬菜呼吸速率的测定应在冷藏温度下进行。  相似文献   

15.
The effect of temperature between 0 °C and 51 °C oncold and heat resistance of chilling-sensitive plants has beenstudied in maize, cucumber and tomato growing in controlledgrowth chambers. It has been shown that the normal temperaturerange (the background range) specific for each species doesnot affect their thermo-resistance. Temperatures outside thisbackground range induced the development of cold and heat resistancein leaves (these are the temperature ranges of cold and heathardening). Temperatures below + °9C and above +49 °Cfor maize, +8 °C and + 40°C for cucumber and +6 °Cand +42°C for tomato resulted in a decrease in leaf thermo-resistanceand injury (these are the temperature ranges of cold and heatinjury). At gradually declining or rising temperatures the initialpoints of plant injury were shifted slightly towards more extremetemperatures. The time necessary for dehardening of plants dependedon the degree of hardening. Dehardening is complete only atthe background temperatures. It has been assumed that the responsesto temperature of chilling-sensitive and chilling-resistantgrowing species belong qualitatively to the same type. Key words: Temperature, Thermo-resistance, Plants  相似文献   

16.
SYNOPSIS Stentor coeruleus, induced to shed their ciliary membranellar bands, regenerate these and associated oral structures within a few hours after treatment. In cells placed in media containing optimal concentrations of mitotic spindle inhibitors, regeneration of the ingestive organelles is reversibly inhibited. Inhibitory effects of Colcemid, podophyllotoxin, and cold temperature reported here are compared with previous results using colchicine, griseofulvin and isopropyl-n-phenyl carbamate on regenerating oral membranellar cilia and cell growth.  相似文献   

17.
The dynamics of cold and heat resistance in a number of coldresistant plant species (potato, meadow fescue, spring and winterwheat) exposed to temperatures from –13 °C to + 50°Chas been studied under controlled environmental conditions.The thermo-resistance of leaves was shown to be constant atcertain temperatures (a range of background temperatures), butit increased (ranges of heat and cold hardening) or decreased(ranges of heat and cold injury) at other temperatures. A gradationof temperatures with respect of ‘thermo-resistance’for these ranges is being proposed. The limits of the rangesvary depending on endogenous (species characteristics, phaseof development) and exogenous factors (environmental conditions).Thus, at gradually rising or falling temperatures the boundariesbetween the ranges of hardening and injury are markedly shiftedtowards more extreme temperatures. Generally, the data showuniformity of responses to extreme temperatures by cold resistantplants; the differences observed between species are quantitative. Key words: Temperature, Cold-resistant plants  相似文献   

18.
Incubation of hydrated Tortula ruralis (Hedw.) Gaertn., Meyer. Scherb. at temperatures down to 2°C resulted in an accumulation of polyribosomes and a decrease in single ribosomes. No changes in the levels of ribosomal subunits were detected. On rehydration of slowly dried moss, which contains no polyribosomes, these were reormed at 2, 8 and 20°C. Rapid incorporation of labelled leucine into protein was observed on reintroduction of the desiccated plant o water at 20°C and there was significant, but much reduced, ncorporation at 2°C. Previously undesiccated moss was also able o take up radioactive leucine and to synthesize protein at 2 and -2.5°C. Changes in the rate of protein synthesis at low temperature were not detected in cold hardened (winter collected or incubated at 2°C) T. ruralis. The moss appears to be adapted to survive freezing wear round and even summer-collected moss can conduct protein synthesis at low temperatures: seasonal cold hardiness changes do lot appear to take place.  相似文献   

19.
低温胁迫下粳稻选育品种耐冷性状的鉴定评价   总被引:1,自引:0,他引:1  
选取来源于中国11个省份和其他9个国家的347份粳稻选育品种作为试验材料,分析了自然低温和冷水胁迫下,不同来源粳稻选育品种孕穗期的耐冷性及主要农艺性状的表型差异和聚类特点。研究表明,在自然低温和冷水胁迫下各省份或国家粳稻选育品种主要农艺性状及其冷水反应指数有明显的差异。在自然低温和冷水胁迫下,云南和日本品种的孕穗期结实率及其冷水反应指数均较高,表现出较强的孕穗期耐冷性。从总体趋势上看,在自然低温下,除个别省份外,我国纬度相对较高的北方省份品种的孕穗期耐冷性强于纬度相对较低的南方省份品种;而在冷水胁迫下,品种的耐冷性与其来源地的关系并不密切,没有呈现出一定的规律性。此外,聚类结果表明,不同省份或国家粳稻选育品种的聚类结果与其品种的地理来源均有一定的相关性,而与自然条件相比,冷水胁迫下粳稻选育品种的聚类结果与其品种的地理来源的相关性更为密切。  相似文献   

20.
While interspecific variation in the temperature response of photosynthesis is well documented, the underlying physiological mechanisms remain unknown. Moreover, mechanisms related to species-dependent differences in photosynthetic temperature acclimation are unclear. We compared photosynthetic temperature acclimation in 11 crop species differing in their cold tolerance, which were grown at 15°C or 30°C. Cold-tolerant species exhibited a large decrease in optimum temperature for the photosynthetic rate at 360 μL L−1 CO2 concentration [Opt (A360)] when growth temperature decreased from 30°C to 15°C, whereas cold-sensitive species were less plastic in Opt (A360). Analysis using the C3 photosynthesis model shows that the limiting step of A360 at the optimum temperature differed between cold-tolerant and cold-sensitive species; ribulose 1,5-bisphosphate carboxylation rate was limiting in cold-tolerant species, while ribulose 1,5-bisphosphate regeneration rate was limiting in cold-sensitive species. Alterations in parameters related to photosynthetic temperature acclimation, including the limiting step of A360, leaf nitrogen, and Rubisco contents, were more plastic to growth temperature in cold-tolerant species than in cold-sensitive species. These plastic alterations contributed to the noted growth temperature-dependent changes in Opt (A360) in cold-tolerant species. Consequently, cold-tolerant species were able to maintain high A360 at 15°C or 30°C, whereas cold-sensitive species were not. We conclude that differences in the plasticity of photosynthetic parameters with respect to growth temperature were responsible for the noted interspecific differences in photosynthetic temperature acclimation between cold-tolerant and cold-sensitive species.The temperature dependence of leaf photosynthetic rate shows considerable variation between plant species and with growth temperature (Berry and Björkman, 1980; Cunningham and Read, 2002; Hikosaka et al., 2006). Plants native to low-temperature environments and those grown at low temperatures generally exhibit higher photosynthetic rates at low temperatures and lower optimum temperatures, compared with plants native to high-temperature environments and those grown at high temperatures (Mooney and Billings, 1961; Slatyer, 1977; Berry and Björkman, 1980; Sage, 2002; Salvucci and Crafts-Brandner, 2004b). For example, the optimum temperature for photosynthesis differs between temperate evergreen species and tropical evergreen species (Hill et al., 1988; Read, 1990; Cunningham and Read, 2002). Such differences have been observed even among ecotypes of the same species (Björkman et al., 1975; Pearcy, 1977; Slatyer, 1977).Temperature dependence of the photosynthetic rate has been analyzed using the biochemical model proposed by Farquhar et al. (1980). This model assumes that the photosynthetic rate (A) is limited by either ribulose 1,5-bisphosphate (RuBP) carboxylation (Ac) or RuBP regeneration (Ar). The optimum temperature for photosynthetic rate in C3 plants is thus potentially determined by (1) the temperature dependence of Ac, (2) the temperature dependence of Ar, or (3) both, at the colimitation point of Ac and Ar (Fig. 1; Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006).Open in a separate windowFigure 1.A scheme illustrating the shift in the optimum temperature for photosynthesis depending on growth temperature. Based on the C3 photosynthesis model, the A360 (white and black circles) is limited by Ac (solid line) or Ar (broken line). The optimum temperature for the photosynthetic rate is potentially determined by temperature dependence of Ac (A), temperature dependence of Ar (B), or the intersection of the temperature dependences of Ac and Ar (C). When the optimum temperature for the photosynthetic rate shifts to a higher temperature, there are also three possibilities determining the optimum temperature: temperature dependence of Ac (D), temperature dependence of Ar (E), or the intersection of the temperature dependences of Ac and Ar (F). Especially in the case that the optimum temperature is determined by the intersection of the temperature dependences of Ac and Ar, the optimum temperature can shift by changes in the balance between Ac and Ar even when the optimum temperatures for these two partial reactions do not change.In many cases, the photosynthetic rate around the optimum temperature is limited by Ac, and thus the temperature dependence of Ac determines the optimum temperature for the photosynthetic rate (Hikosaka et al., 1999, 2006; Yamori et al., 2005, 2006a, 2006b, 2008; Sage and Kubien, 2007; Sage et al., 2008). As the temperature increases above the optimum, Ac is decreased by increases in photorespiration (Berry and Björkman, 1980; Jordan and Ogren, 1984; von Caemmerer, 2000). Furthermore, it has been suggested that the heat-induced deactivation of Rubisco is involved in the decrease in Ac at high temperature (Law and Crafts-Brandner, 1999; Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004a; Yamori et al., 2006b). Numerous previous studies have shown changes in the temperature dependence of Ac with growth temperature (Hikosaka et al., 1999; Bunce, 2000; Yamori et al., 2005). Also, the temperature sensitivity of Rubisco deactivation may differ between plant species (Salvucci and Crafts-Brandner, 2004b) and with growth temperature (Yamori et al., 2006b), which may explain variation in the optimum temperature for photosynthesis (Fig. 1, A and D).Ar is more responsive to temperature than Ac and often limits photosynthesis at low temperatures (Hikosaka et al., 1999, 2006; Sage and Kubien, 2007; Sage et al., 2008). Recently, several researchers indicated that Ar limits the photosynthetic rate at high temperature (Schrader et al., 2004; Wise et al., 2004; Cen and Sage, 2005; Makino and Sage, 2007). They suggested that the deactivation of Rubisco at high temperatures is not the cause of decreased Ac but a result of limitation by Ar. However, it remains unclear whether limitation by Ar is involved in the variation in the optimum temperature for the photosynthetic rate (Fig. 1, B and E).A shift in the optimum temperature for photosynthesis can result from changes in the balance between Ar and Ac, even when the optimum temperatures for these two partial reactions do not change (Fig. 1, C and F; Farquhar and von Caemmerer, 1982). The balance between Ar and Ac has been shown to change depending on growth temperature (Hikosaka et al., 1999; Hikosaka, 2005; Onoda et al., 2005a; Yamori et al., 2005) and often brings about a shift in the colimitation temperature of Ar and Ac. Furthermore, recent studies have shown that plasticity in this balance differs among species or ecotypes (Onoda et al., 2005b; Atkin et al., 2006; Ishikawa et al., 2007). Plasticity in this balance could explain interspecific variation in the plasticity of photosynthetic temperature dependence (Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006), although there has been no evidence in the previous studies that the optimum temperature for photosynthesis occurs at the colimitation point of Ar and Ac.Temperature tolerance differs between species and, with growth temperature, even within species from the same functional group (Long and Woodward, 1989). Bunce (2000) indicated that the temperature dependences of Ar and Ac to growth temperature were different between species from cool and warm climates and that the balance between Ar and Ac was independent of growth temperature for a given plant species. However, it was not clarified what limited the photosynthetic rate or what parameters were important in temperature acclimation of photosynthesis. Recently, we reported that the extent of temperature homeostasis of leaf respiration and photosynthesis, which is assessed as a ratio of rates measured at their respective growth temperatures, differed depending on the extent of the cold tolerance of the species (Yamori et al., 2009b). Therefore, comparisons of several species with different cold tolerances would provide a new insight into interspecific variation of photosynthetic temperature acclimation and their underlying mechanisms. In this study, we selected 11 herbaceous crop species that differ in their cold tolerance (Yamori et al., 2009b) and grew them at two contrasting temperatures, conducting gas-exchange analyses based on the C3 photosynthesis model (Farquhar et al., 1980). Based on these results, we addressed the following key questions. (1) Does the plasticity in photosynthetic temperature acclimation differ between cold-sensitive and cold-tolerant species? (2) Does the limiting step of photosynthesis at several leaf temperatures differ between plant species and with growth temperature? (3) What determines the optimum temperature for the photosynthetic rate among Ac, Ar, and the intersection of the temperature dependences of Ac and Ar?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号