首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single amino acid polymorphisms (SAPs), also known as non-synonymous single nucleotide polymorphisms (nsSNPs), are responsible for most of human genetic diseases. Discriminate the deleterious SAPs from neutral ones can help identify the disease genes and understand the mechanism of diseases. In this work, a method of deleterious SAP prediction at system level was established. Unlike most existing methods, our method not only considers the sequence and structure information, but also the network information. The integration of network information can improve the performance of deleterious SAP prediction. To make our method available to the public, we developed SySAP (a System-level predictor of deleterious Single Amino acid Polymorphisms), an easy-to-use and high accurate web server. SySAP is freely available at http://www.biosino.org/SySAP/and http://lifecenter.sgst.cn/SySAP/.  相似文献   

2.
Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i) a combination of sequence- and structure-derived parameters and (ii) sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras–Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.  相似文献   

3.
Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i) a combination of sequence- and structure-derived parameters and (ii) sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras–Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.  相似文献   

4.
MOTIVATION: The rapid accumulation of single amino acid polymorphisms (SAPs), also known as non-synonymous single nucleotide polymorphisms (nsSNPs), brings the opportunities and needs to understand and predict their disease association. Currently published attributes are limited, the detailed mechanisms governing the disease association of a SAP remain unclear and thus, further investigation of new attributes and improvement of the prediction are desired. RESULTS: A SAP dataset was compiled from the Swiss-Prot variant pages. We extracted and demonstrated the effectiveness of several new biologically informative attributes including the structural neighbor profiles that describe the SAP's microenvironment, nearby functional sites that measure the structure-based and sequence-based distances between the SAP site and its nearby functional sites, aggregation properties that measure the likelihood of protein aggregation and disordered regions that consider whether the SAP is located in structurally disordered regions. The new attributes provided insights into the mechanisms of the disease association of SAPs. We built a support vector machines (SVMs) classifier employing a carefully selected set of new and previously published attributes. Through a strict protein-level 5-fold cross-validation, we attained an overall accuracy of 82.61%, and an MCC of 0.60. Moreover, a web server was developed to provide a user-friendly interface for biologists. AVAILABILITY: The web server is available at http://sapred.cbi.pku.edu.cn/  相似文献   

5.
The current state of the art in medical genetics is to identify and classify the functional (deleterious) or non-functional (neutral) single amino acid substitutions (SAPs), also known as non-synonymous SNPs (nsSNPs). The primary goal is to elucidate the mechanisms through which functional SAPs exert their effects, and ultimately interrogating this information for association with complex phenotypes. This work focuses on coagulation factors involved in the coagulation cascade pathway which plays a vital role in the maintenance of homeostasis in the human system. We developed an integrated coagulation variation database, CoagVDb, which makes use of the biological information from various public databases such as NCBI, OMIM, UniProt, PDB and SAPs (rsIDs/variant). CoagVDb enriched with computational prediction scores classify SAPs as either deleterious or tolerated. Also, various other properties are incorporated such as amino acid composition, secondary structure elements, solvent accessibility, ordered/disordered regions, conservation, and the presence of disulfide bonds. This specialized database provides integration of various prediction scores from different computational methods along with gene, protein, and disease information. We hope our database will act as a useful reference resource for hematologists to reveal protein structure–function relationship and disease genotype–phenotype correlation.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0028-5) contains supplementary material, which is available to authorized users.  相似文献   

6.
The identification of MHC restricted epitopes is an important goal in peptide based vaccine and diagnostic development. As wet lab experiments for identification of MHC binding peptide are expensive and time consuming, in silico tools have been developed as fast alternatives, however with low performance. In the present study, we used IEDB training and blind validation datasets for the prediction of peptide binding to fourteen human MHC class I and II molecules using Gibbs motif sampler, weight matrix and artificial neural network methods. As compare to MHC class I predictor based on sequence weighting (Aroc=0.95 and CC=0.56) and artificial neural network (Aroc=0.73 and CC=0.25), MHC class II predictor based on Gibbs sampler did not perform well (Aroc=0.62 and CC=0.19). The predictive accuracy of Gibbs motif sampler in identifying the 9-mer cores of a binding peptide to DRB1 alleles are also limited (40¢), however above the random prediction (14¢). Therefore, the size of dataset (training and validation) and the correct identification of the binding core are the two main factors limiting the performance of MHC class-II binding peptide prediction. Overall, these data suggest that there is substantial room to improve the quality of the core predictions using novel approaches that capture distinct features of MHC-peptide interactions than the current approaches.  相似文献   

7.
8.
Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution of demographic and selective effects to patterning amino acid variation in the human genome. We find evidence of an ancient population expansion in the sample with African ancestry and a relatively recent bottleneck in the sample with European ancestry. After accounting for these demographic effects, we find strong evidence for great variability in the selective effects of new amino acid replacing mutations. In both populations, the patterns of variation are consistent with a leptokurtic distribution of selection coefficients (e.g., gamma or log-normal) peaked near neutrality. Specifically, we predict 27–29% of amino acid changing (nonsynonymous) mutations are neutral or nearly neutral (|s|<0.01%), 30–42% are moderately deleterious (0.01%<|s|<1%), and nearly all the remainder are highly deleterious or lethal (|s|>1%). Our results are consistent with 10–20% of amino acid differences between humans and chimpanzees having been fixed by positive selection with the remainder of differences being neutral or nearly neutral. Our analysis also predicts that many of the alleles identified via whole-genome association mapping may be selectively neutral or (formerly) positively selected, implying that deleterious genetic variation affecting disease phenotype may be missed by this widely used approach for mapping genes underlying complex traits.  相似文献   

9.
The goal of this work is to characterize structurally ambivalent fragments in proteins. We have searched the Protein Data Bank and identified all structurally ambivalent peptides (SAPs) of length five or greater that exist in two different backbone conformations. The SAPs were classified in five distinct categories based on their structure. We propose a novel index that provides a quantitative measure of conformational variability of a sequence fragment. It measures the context-dependent width of the distribution of (phi,xi) dihedral angles associated with each amino acid type. This index was used to analyze the local structural propensity of both SAPs and the sequence fragments contiguous to them. We also analyzed type-specific amino acid composition, solvent accessibility, and overall structural properties of SAPs and their sequence context. We show that each type of SAP has an unusual, type-specific amino acid composition and, as a result, simultaneous intrinsic preferences for two distinct types of backbone conformation. All types of SAPs have lower sequence complexity than average. Fragments that adopt helical conformation in one protein and sheet conformation in another have the lowest sequence complexity and are sampled from a relatively limited repertoire of possible residue combinations. A statistically significant difference between two distinct conformations of the same SAP is observed not only in the overall structural properties of proteins harboring the SAP but also in the properties of its flanking regions and in the pattern of solvent accessibility. These results have implications for protein design and structure prediction.  相似文献   

10.
Cai Y  Huang T  Hu L  Shi X  Xie L  Li Y 《Amino acids》2012,42(4):1387-1395
Ubiquitination, one of the most important post-translational modifications of proteins, occurs when ubiquitin (a small 76-amino acid protein) is attached to lysine on a target protein. It often commits the labeled protein to degradation and plays important roles in regulating many cellular processes implicated in a variety of diseases. Since ubiquitination is rapid and reversible, it is time-consuming and labor-intensive to identify ubiquitination sites using conventional experimental approaches. To efficiently discover lysine-ubiquitination sites, a sequence-based predictor of ubiquitination site was developed based on nearest neighbor algorithm. We used the maximum relevance and minimum redundancy principle to identify the key features and the incremental feature selection procedure to optimize the prediction engine. PSSM conservation scores, amino acid factors and disorder scores of the surrounding sequence formed the optimized 456 features. The Mathew’s correlation coefficient (MCC) of our ubiquitination site predictor achieved 0.142 by jackknife cross-validation test on a large benchmark dataset. In independent test, the MCC of our method was 0.139, higher than the existing ubiquitination site predictor UbiPred and UbPred. The MCCs of UbiPred and UbPred on the same test set were 0.135 and 0.117, respectively. Our analysis shows that the conservation of amino acids at and around lysine plays an important role in ubiquitination site prediction. What’s more, disorder and ubiquitination have a strong relevance. These findings might provide useful insights for studying the mechanisms of ubiquitination and modulating the ubiquitination pathway, potentially leading to potential therapeutic strategies in the future.  相似文献   

11.

Background

Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.

Methods/Principal Findings

To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.

Conclusion/Significance

Our results indicate that the network prediction system thus established is quite promising and encouraging.  相似文献   

12.
Sequestered particles of phytochrome (SAPs) were partially purified from red-light-irradiated oat coleoptiles. Phytochrome pelletability was enhanced by using buffers containing 10 mM Mg2+ or high concentrations (0.6–0.8 M) of orthophosphate (Pi). Combining the pelletability of phytochrome in the presence of Mg2+ with that in the presence of 0.6 Pi resulted in a strong enrichment (about 100-fold) of pelletable phytochrome. Antisera were raised against Mg2+-Pi-pellets from darkgrown seedlings. Using these antisera, no evidence was found by Western blotting and immunocytochemistry that SAPs contain major proteins other than phytochrome. The major contamination of these enriched SAP preparations consisted of protein crystals which are probably catalase. The preparations contained methyltransferase and protein-kinase activities which were not associated with SAPs. Phytochrome purified from SAPs served as a substrate for protein-kinase activity but not for the methyltransferase activity. Phytochrome itself did not show any kinase activity.Abbreviations ME 2-mercaptoethanol - PAGE polyacrylamide gel electrophoresis - Pfr far-red-light-absorbing form of phytochrome - PMSF phenylmethylsulfonyl fluoride - SAP sequestered area of phytochrome - SDS sodium dodecyl sulfate This work was supported by Deutsche Forschungsgemeinschaft. The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

13.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

14.
Single-nucleotide polymorphisms (SNPs) are the most frequent form of genetic variations. Non-synonymous SNPs (nsSNPs) occurring in coding region result in single amino acid substitutions that associate with human hereditary diseases. Plenty of approaches were designed for distinguishing deleterious from neutral nsSNPs based on sequence level information. Novel in this work, combinations of protein–protein interaction (PPI) network topological features were introduced in predicting disease-related nsSNPs. Based on a dataset that was compiled from Swiss-Prot, a random forest model was constructed with an average accuracy value of 80.43 % and an MCC value of 0.60 in a rigorous tenfold crossvalidation test. For an independent dataset, our model achieved an accuracy of 88.05 % and an MCC of 0.67. Compared with previous studies, our approach presented superior prediction ability. Results showed that the incorporated PPI network topological features outperform conventional features. Our further analysis indicated that disease-related proteins are topologically different from other proteins. This study suggested that nsSNPs may share some topological information of proteins and the change of topological attributes could provide clues in illustrating functional shift due to nsSNPs.  相似文献   

15.
目的 毛干是案件现场常见的生物物证,目前缺少有效的个体识别方法而未能在案件调查和法庭诉讼中发挥作用。毛干蛋白质组中的单氨基酸多态性(SAP)蕴含着个体遗传差异信息,可应用于个体识别。方法 为研究毛干物证SAP个体差异,本文使用离子液体对12份2 cm长的毛干样本(6人,每人2根)经过前处理后,进行LC-MS/MS质谱检测,分析毛干中的蛋白质组成。然后利用自建的东亚人群SAP蛋白质序列数据库,对质谱数据进行搜库分析,依据自建的SAP与SNP对应注释表信息,推导出SAP对应的nsSNP分型,并且与外显子测序nsSNP结果比较,进而验证SAP检测的准确性。最后,利用验证准确的SAP分型进行随机匹配概率的计算。结果 12份样品共计获得321个SAP,每个样本平均为(131±17)个。6人的随机匹配概率数值范围为1.4×10-4~1.0×10-9结论 本文建立了东亚人群毛干蛋白中SAP检测方法,并验证了个体识别应用的能力,为法庭科学中毛干个体识别提供了有力的工具和新的思路。  相似文献   

16.
Precise identification of target sites of RNA-binding proteins (RBP) is important to understand their biochemical and cellular functions. A large amount of experimental data is generated by in vivo and in vitro approaches. The binding preferences determined from these platforms share similar patterns but there are discernable differences between these datasets. Computational methods trained on one dataset do not always work well on another dataset. To address this problem which resembles the classic “domain shift” in deep learning, we adopted the adversarial domain adaptation (ADDA) technique and developed a framework (RBP-ADDA) that can extract RBP binding preferences from an integration of in vivo and vitro datasets. Compared with conventional methods, ADDA has the advantage of working with two input datasets, as it trains the initial neural network for each dataset individually, projects the two datasets onto a feature space, and uses an adversarial framework to derive an optimal network that achieves an optimal discriminative predictive power. In the first step, for each RBP, we include only the in vitro data to pre-train a source network and a task predictor. Next, for the same RBP, we initiate the target network by using the source network and use adversarial domain adaptation to update the target network using both in vitro and in vivo data. These two steps help leverage the in vitro data to improve the prediction on in vivo data, which is typically challenging with a lower signal-to-noise ratio. Finally, to further take the advantage of the fused source and target data, we fine-tune the task predictor using both data. We showed that RBP-ADDA achieved better performance in modeling in vivo RBP binding data than other existing methods as judged by Pearson correlations. It also improved predictive performance on in vitro datasets. We further applied augmentation operations on RBPs with less in vivo data to expand the input data and showed that it can improve prediction performances. Lastly, we explored the predictive interpretability of RBP-ADDA, where we quantified the contribution of the input features by Integrated Gradients and identified nucleotide positions that are important for RBP recognition.  相似文献   

17.
We present a statistical graphical model to infer specific molecular function for unannotated protein sequences using homology. Based on phylogenomic principles, SIFTER (Statistical Inference of Function Through Evolutionary Relationships) accurately predicts molecular function for members of a protein family given a reconciled phylogeny and available function annotations, even when the data are sparse or noisy. Our method produced specific and consistent molecular function predictions across 100 Pfam families in comparison to the Gene Ontology annotation database, BLAST, GOtcha, and Orthostrapper. We performed a more detailed exploration of functional predictions on the adenosine-5′-monophosphate/adenosine deaminase family and the lactate/malate dehydrogenase family, in the former case comparing the predictions against a gold standard set of published functional characterizations. Given function annotations for 3% of the proteins in the deaminase family, SIFTER achieves 96% accuracy in predicting molecular function for experimentally characterized proteins as reported in the literature. The accuracy of SIFTER on this dataset is a significant improvement over other currently available methods such as BLAST (75%), GeneQuiz (64%), GOtcha (89%), and Orthostrapper (11%). We also experimentally characterized the adenosine deaminase from Plasmodium falciparum, confirming SIFTER's prediction. The results illustrate the predictive power of exploiting a statistical model of function evolution in phylogenomic problems. A software implementation of SIFTER is available from the authors.  相似文献   

18.
Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein–RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein–rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a ‘proof of concept’ that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites.  相似文献   

19.
Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved, extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be “signature” of a domain''s native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families across the 1018 known protein folds to construct our seed database and an automated framework was developed for PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2 angstroms (mean 1.61A) Cα RMSD generally observed between computed structures and reference crystal structures. Our results are consistent across the full spectrum of test domains including those from recent CASP experiments and most notably in the ‘twilight’ and ‘midnight’ zones wherein <30% and <10% target-template sequence identity prevails (mean twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein modeling and analysis tools.  相似文献   

20.

Background  

As the number of non-synonymous single nucleotide polymorphisms (nsSNPs), also known as single amino acid polymorphisms (SAPs), increases rapidly, computational methods that can distinguish disease-causing SAPs from neutral SAPs are needed. Many methods have been developed to distinguish disease-causing SAPs based on both structural and sequence features of the mutation point. One limitation of these methods is that they are not applicable to the cases where protein structures are not available. In this study, we explore the feasibility of classifying SAPs into disease-causing and neutral mutations using only information derived from protein sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号