首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Wound repair is a tightly regulated process stimulated by proteases, growth factors, and chemokines, which are modulated by heparan sulfate. To characterize further the role of the heparan sulfate proteoglycan syndecan-1 in wound repair, we generated mice overexpressing syndecan-1 (Snd/Snd) and studied dermal wound repair. Wound closure, reepithelialization, granulation tissue formation, and remodeling were delayed in Snd/Snd mice. Soluble syndecan-1 was increased, and shedding was prolonged in wounds from Snd/Snd mice. Excess syndecan-1 increased the elastolytic activity of wound fluids. Additionally, cells in the granulation tissue and keratinocytes at wound edges showed markedly reduced proliferation rates in Snd/Snd mice. Skin grafting experiments between Snd/Snd and control mice indicated that the slower growth rate was mainly due to a soluble factor in the Snd/Snd mouse skin. Syndecan-1 immunodepletion and further degradation experiments identified syndecan-1 ectodomain as a dominant negative inhibitor of cell proliferation. These studies indicate that shed syndecan-1 ectodomain may enhance proteolytic activity and inhibit cell proliferation during wound repair.  相似文献   

2.
Wound repair/regeneration is a genetically controlled, complex process. In order to identify candidate genes regulating fast wound repair/regeneration in soft-tissue, the temporal protein profile of the soft-tissue healing process was analyzed in the ear-punched tissue of regeneration strain MRL/MpJ-Fas(lpr) (MRL) mice and non-regeneration strain C57BL/6J(B6) mice using surface-enhanced laser desorption and ionization (SELDI) ProteinChip technology. Five candidate proteins were identified in which responses of MRL to the ear punch were 2-4-fold different compared to that of B6. Their corresponding genes were predicted using an antigen-antibody assay validated mass-based approach. Most of the predicted genes are known to play a role or are likely to play a role in the wound repair/regeneration. Of the five candidate proteins, the amount of the 23560 Da protein in the ear-punched tissue was significantly correlated with the rate of ear healing in six representative strains of mice, making it a good candidate for fast wound repair/regeneration. We speculate that the increased concentration of the 23560 Da protein in the wound tissue could stimulate the expression of various growth-promoting proteins and consequently speed up the wound repair/regeneration processes. Here, we have shown that examination of protein expression profile using SELDI technology, coupled with database search, is an alternative approach to search for candidate genes for wound repair/regeneration. This novel approach can be implemented in a variety of biological applications.  相似文献   

3.
Regulation of angiogenesis: wound healing as a model   总被引:1,自引:0,他引:1  
Normal tissue function requires adequate supply of oxygen through blood vessels. Understanding how blood vessels form is a challenging objective because angiogenesis is vital to many physiological and pathological processes. Unraveling mechanisms of angiogenesis would offer therapeutic options to ameliorate disorders that are currently leading causes of mortality and morbidity, including cardiovascular diseases, cancer, chronic inflammatory disorders, diabetic retinopathy, excessive tissue defects, and chronic non-healing wounds. Restoring blood flow to the site of injured tissue is a prerequisite for mounting a successful repair response, and wound angiogenesis represents a paradigmatic model to study molecular mechanisms involved in the formation and remodeling of vascular structures. In particular, repair of skin defects offers an ideal model to analyze angiogenesis due to its easy accessibility to control and manipulate this process. Most of those growth factors, extracellular matrix molecules, and cell types, recently discovered and considered as crucial factors in blood vessel formation, have been identified and analyzed during skin repair and the process of wound angiogenesis. This article will review cellular and molecular mechanisms controlling angiogenesis in cutaneous tissue repair in light of recent reports and data from our laboratories. In this article we will discuss the contribution of growth factors, basement membrane molecules, and mural cells in wound angiogenesis. The article provides a rationale for targeting the angiogenic response in order to modulate the outcome of the healing response.  相似文献   

4.
An increasing number of patients are being treated with growth hormone (GH) for the enhancement of body growth but also as an anti-aging strategy. However, the side effects of GH have been poorly defined. In this study we determined the effect of GH on wound repair and its mechanisms of action at the wound site. For this purpose, we performed wound healing studies in transgenic mice overexpressing GH. Full thickness incisional and excisional wounds of transgenic animals developed extensive, highly vascularized granulation tissue. However, wound bursting strength was not increased. Wound closure was strongly delayed as a result of enhanced granulation tissue formation and impaired wound contraction. The latter effect is most likely due to a significantly reduced number of myofibroblasts at the wound site. By using in vitro studies with stressed collagen lattices, we identified GH as an inhibitor of transforming growth factor beta-induced myofibroblast differentiation, resulting in a reduction in fibroblast contractile activity. These results revealed novel roles of GH in angiogenesis and myofibroblast differentiation, which are most likely not mediated via insulin-like growth factors at the wound site. Furthermore, our data suggested that systemic GH treatment is detrimental for wound healing in healthy individuals.  相似文献   

5.
6.
7.
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.  相似文献   

8.
Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration.However,it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues.Mesenchymal stem cells(MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes,which generate a suitable microenvironment for inflammatory resolution.Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells.During this process,the horizontal transfer of exosomal microRNAs(miRNAs) to acceptor cells,where they regulate target gene expression,is of particular interest for understanding the basic biology of inflammation ablation,tissue homeostasis,and development of therapeutic approaches.In this review,we describe a signature of three specific miRNAs(miR-21,miR-146 a,and miR-181) present in human umbilical cord MSC-derived exosomes(MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs.We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.  相似文献   

9.
柏书博  王国栋  吴洋 《生物磁学》2011,(17):3370-3372,3351
创伤愈合是一个复杂的生物学过程,涉及炎症细胞,修复细胞、细胞外基质以及细胞因子之间的相互作用。传统将这一过程分为炎症期、增值期、组织重构三个相互重叠的时期。细胞因子是一类对细胞生长、分化有明显调控作用的小分子生物活性多肽。是细胞与细胞外基质间重要的信号传导物。多种生长因子被释放到伤口部位被认为是创伤愈合所必需的。本文就细胞因子对创伤愈合的促进作用、细胞因子相互之间的协同作用,以及应用前景作以概述。  相似文献   

10.
11.
Wound-healing studies in transgenic and knockout mice   总被引:4,自引:0,他引:4  
Injury to the skin initiates a cascade of events including inflammation, new tissue formation, and tissue remodeling, that finally lead to at least partial reconstruction of the original tissue. Historically, animal models of repair have taught us much about how this repair process is orchestrated and, over recent years, the use of genetically modified mice has helped define the roles of many key molecules. Aside from conventional knockout technology, many ingenious approaches have been adopted, allowing researchers to circumvent such problems as embryonic lethality, or to affect gene function in a tissue-or temporal-specific manner. Together, these studies provide us with a growing source of information describing, to date, the in vivo function of nearly 100 proteins in the context of wound repair. This article focuses on the studies in which genetically modified mouse models have helped elucidate the roles that many soluble mediators play during wound repair, encompassing the fibroblast growth factor (FGF) and transforming growth factor-β (TGF-β) families and also data on cytokines and chemokines. Finally, we include a table summarizing all of the currently published data in this rapidly growing field. For a regularly updated web archive of studies, we have constructed a Compendium of Published Wound Healing Studies on Genetically Modified Mice which is available at http://icbxs.ethz.ch/members/grose/woundtransgenic/home.html.  相似文献   

12.
13.
Xirp proteins mark injured skeletal muscle in zebrafish   总被引:1,自引:0,他引:1  
Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7(+) cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations.  相似文献   

14.
Various cellular and humoral activities of the wound repair process and the effects of PDGF-AB and TGF-beta1 on tissue repair mechanisms in the mollusc Limax maximus are studied by histological and immunocytochemical procedures. Histological examination at different times after the wound production demonstrates that tissue repair is the result of successive and related activities distinguishable by different morphological pictures. In the first hours, an infiltration phase is activated 24 h after the incision, hemocytes stratify at wound margins and actively phagocitize cell debris and damaged tissue in the surrounding area. Moreover, the cells are immunoreactive to anti-IL-1alpha, IL-8 and TNF-alpha antibodies. After 24-72 h, granulation tissue rich in small blood lacunae is formed and the provisional matrix is synthesized and deposited on the base of the new tissue. In histological sections 72 h after injury, the incision is filled with granulation tissue, and at the wound base, a layer of fibrous connective tissue is formed. Hemocytes present in the newly formed blood lacunae and fibroblasts are involved in the synthesis and deposit of extracellular matrix components, i.e. fibronectin, reticular and collagen fibres. Ninety-six h after wound production, the repair process continues and the granulation tissue is more developed. At 192 h, re-epithelialization begins, and this is more evident in the histological sections after 14 days. Hemocytes are immunoreactive to the cytokines at all the times examined. Exogenous administration of PDGF-AB and TGF-beta1 stimulates the tissue healing process through a general acceleration of the activities involved. A larger closing area of clumped hemocytes and a smaller damaged tissue area are observed 24 h after treatment of the wound. At 72 h, the granulation tissue is more developed and more extracellular matrix components are deposited than in the control incision. A larger number of cells express cytokine-like molecules, and re-epithelialization of the wound is accelerated, as 14 days after growth factor treatments almost all the wound area is covered by a layer of cubic epithelial cells, and the alcianophilic cell coat is restored. No differences in the responses of the two growth factors are observed.  相似文献   

15.
16.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

17.
Epidermal tissue repair represents a complex series of temporal and dynamic events resulting in wound closure. Matricellular proteins, not normally expressed in quiescent adult tissues, play a pivotal role in wound repair and associated extracellular matrix remodeling by modulating the adhesion, migration, intracellular signaling, and gene expression of inflammatory cells, pericytes, fibroblasts and keratinocytes. Several matricellular proteins show temporal expression during dermal wound repair, but the expression pattern of the recently identified matricellular protein, periostin, has not yet been characterized. The primary aim of this study was to assess whether periostin protein is present in healthy human skin or in pathological remodeling (Nevus). The second aim was to determine if periostin is expressed during dermal wound repair. Using immunohistochemistry, periostin reactivity was detected in the keratinocytes, basal lamina, and dermal fibroblasts in healthy human skin. In pathological nevus samples, periostin was present in the extracellular matrix. In excisional wounds in mice, periostin protein was first detected in the granulation tissue at day 3, with levels peaking at day 7. Periostin protein co-localized with α-smooth muscle actin-positive cells and keratinocytes, but not CD68 positive inflammatory cells. We conclude that periostin is normally expressed at the cellular level in human and murine skin, but additionally becomes extracellular during tissue remodeling. Periostin may represent a new therapeutic target for modulating the wound repair process.  相似文献   

18.
When single cells or tissues are injured, the wound must be repaired quickly in order to prevent cell death, loss of tissue integrity, and invasion by microorganisms. We describe Drosophila as a genetically tractable model to dissect the mechanisms of single-cell wound repair. By analyzing the expression and the effects of perturbations of actin, myosin, microtubules, E-cadherin, and the plasma membrane, we define three distinct phases in the repair process-expansion, contraction, and closure-and identify specific components required during each phase. Specifically, plasma membrane mobilization and assembly of a contractile actomyosin ring are required for this process. In addition, E-cadherin accumulates at the wound edge, and wound expansion is excessive in E-cadherin mutants, suggesting a role for E-cadherin in anchoring the actomyosin ring to the plasma membrane. Our results show that single-cell wound repair requires specific spatial and temporal cytoskeleton responses with distinct components and mechanisms required at different stages of the process.  相似文献   

19.
组织修复涉及一系列复杂的生理学、免疫学及细胞生物学过程。研究表明,受损组织周围存在着一定强度的内源性电场,类似生理强度的外源性电场能指导细胞定向迁移、控制细胞极化、调节细胞增殖和分化等一系列生物学行为。该文针对外源性电场在伤口愈合、骨组织愈合以及血管新生过程中的细胞生物学作用及其对修复过程中组织水平的影响进行综述,以期为外源性电场在今后临床中的应用提供参考。  相似文献   

20.
Targeting connexin43 expression accelerates the rate of wound repair   总被引:6,自引:0,他引:6  
The repair of tissue damage is a key survival process in all organisms and involves the coordinated activation of several cell types. Cell-cell communication is clearly fundamental to this process, and a great deal is known about extracellular communication within the wound site via cytokines. Here we show that direct cell-cell communication through connexin 43 (Cx43) gap junction channels also plays a major role in the wound healing process. In two different wound healing models, incisional and excisional skin lesions, we show that a single topical application of Cx43 antisense gel brings about a transient downregulation of Cx43 protein levels, and this results in a dramatic increase in the rate of wound closure. Cx43 knockdown reduces inflammation, seen both macroscopically, as a reduction in swelling, redness, and wound gape, and microscopically, as a significant decrease in neutrophil numbers in the tissue around the wound. One long-term consequence of the improved rate of healing is a significant reduction in the extent of granulation tissue deposition and the subsequent formation of a smaller, less distorted, scar. This approach is likely to have widespread therapeutic applications in other injured tissues and opens up new avenues of research into improving the wound healing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号