首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThis multi-institution study assessed the positioning accuracy of multileaf collimators (MLC) by analyzing log files. It determined the main machine parameters that affect MLC positioning errors for pre-TrueBeam (Clinac) and TrueBeam linacs.MethodsAround 30,000 dIMRT and VMAT log files belonging to 6 linacs from 4 different centers were analyzed. An in-house software was used to calculate 95th percentile and RMS error values and their correlation with certain parameters such as maximum leaf speed, mean leaf speed and gantry angle. The effect of MLC communication delay on error statistics was assessed in Clinac linacs. To that end MLC positioning error statistics were calculated with and without the delay effect.ResultsFor dIMRT treatments in Clinac linacs the mean leaf RMS error was 0.306 mm with and 0.030 mm without the delay effect. Leaf RMS error was closely linked to maximum and mean leaf speeds, but without the delay effect that link was weaker. No trend was observed between bank RMS error and gantry angle. Without the delay effect larger bank RMS errors were obtained for gantry angles with leaf movements against gravity. For VMAT treatments in TrueBeam linacs the mean leaf RMS error was 0.038 mm. A link was also observed between leaf RMS error and maximum and mean leaf speeds.ConclusionTrueBeam MLC positioning errors are substantially lower than those of Clinac linacs. In Clinac machines the analysis of dynalogs without the delay effect allows us to study the influence of factors that are masked by the delay effect.  相似文献   

2.
PurposeThis study proposed a synchronous measurement method for patient-specific dosimetry using two three-dimensional dose verification systems with delivery errors.MethodsTwenty hypofractionated radiotherapy treatment plans for patients with lung cancer were retrospectively reviewed. Monitor unit (MU) changes, leaf in-position errors, and angles of deviation of the collimator were intentionally introduced to investigate the detection sensitivity of the EDose + EPID (EE) and Dolphin + Compass (DC) systems.ResultsBoth systems accurately detected the MU modifications and had a similar ability to detect leaf in-position errors. The detection of multi-leaf collimator (MLC) errors was difficult for the whole body using different gamma criteria. When the introduced MLC error was 1.0 mm, the numbers of errors detected in the clinical target volume (CTV) by the EE system were 20, 20, and 20 and the numbers of errors detected by the DC system were 18, 19, and 20, at 3%/2 mm, 2%/2 mm, and 1%/1 mm, respectively. The average dose deviation of all DVH parameters exceeded 3%. The gamma and DVH evaluation results remained unchanged for the DC system when different collimator angle errors were introduced. The number of errors detected by the EE system was <11 for each anatomical structure for all gamma criteria. The mean dose deviation of the CTV was not distinguished.ConclusionsThis synchronous measurement approach can effectively eliminate the influence of random errors during treatment. The EE and DC systems reconstruct the three-dimensional dose distribution accurately and are convenient and reliable for dose verification.  相似文献   

3.
PurposeThis study evaluates the correlation between the susceptibility of the γ passing rate of IMRT plans to the multi-leaf collimator (MLC) position errors and a quantitative plan complexity metric.MethodsTwenty patients were selected for this study. For each patient, two IMRT plans were generated using sliding window and step-&-shoot techniques, respectively. Modulation complexity score (MCS) was calculated for all IMRT plans, and symmetric MLC leaf bank errors, ranging from 0.3 mm to 1 mm, were introduced. Original and modified plans were delivered using Varian’s Clinac iX. The obtained dose distribution using ArcCHECK was then compared with the TPS calculated dose distribution of the original plans. 3D gamma analysis was performed for each verification with passing criteria of 2%/2 mm. The γ passing rate decreasing gradient were calculated to evaluate relationship between variation of γ passing rate due to MLC errors and complexity.ResultsA linear regression analysis was applied between γ gradient and complexity, and the results showed a linear correlation (R2 = 0.81 and 0.82 for open and closed MLC error types, respectively) indicating the more complex plans are more susceptible to MLC leaf bank errors. Meanwhile, correlation of re-normalized γ passing rate and complexity for all errors scenarios also presented a strong correlation (r > 0.75).ConclusionThe statistics results revealed variation relationship of dosimetry robust of plans with various complexities to MLC errors. Our results also suggested that the observed susceptibility is independent of the delivery techniques.  相似文献   

4.
PurposeEPID dosimetry in the Unity MR-Linac system allows for reconstruction of absolute dose distributions within the patient geometry. Dose reconstruction is accurate for the parts of the beam arriving at the EPID through the MRI central unattenuated region, free of gradient coils, resulting in a maximum field size of ~10 × 22 cm2 at isocentre. The purpose of this study is to develop a Deep Learning-based method to improve the accuracy of 2D EPID reconstructed dose distributions outside this central region, accounting for the effects of the extra attenuation and scatter.MethodsA U-Net was trained to correct EPID dose images calculated at the isocenter inside a cylindrical phantom using the corresponding TPS dose images as ground truth for training. The model was evaluated using a 5-fold cross validation procedure. The clinical validity of the U-Net corrected dose images (the so-called DEEPID dose images) was assessed with in vivo verification data of 45 large rectum IMRT fields. The sensitivity of DEEPID to leaf bank position errors (±1.5 mm) and ±5% MU delivery errors was also tested.ResultsCompared to the TPS, in vivo 2D DEEPID dose images showed an average γ-pass rate of 90.2% (72.6%–99.4%) outside the central unattenuated region. Without DEEPID correction, this number was 44.5% (4.0%–78.4%). DEEPID correctly detected the introduced delivery errors.ConclusionsDEEPID allows for accurate dose reconstruction using the entire EPID image, thus enabling dosimetric verification for field sizes up to ~19 × 22 cm2 at isocentre. The method can be used to detect clinically relevant errors.  相似文献   

5.
PurposeTo compare detectors for dosimetric verification before VMAT treatments and evaluate their sensitivity to errors.Methods and materialsMeasurements using three detectors (ArcCheck, 2d array 729 and EPID) were used to validate the dosimetric accuracy of the VMAT delivery. Firstly, performance of the three devices was studied. Secondly, to assess the reliability of the detectors, 59 VMAT treatment plans from a variety of clinical sites were considered. Thirdly, systematic variations in collimator, couch and gantry angle plus MLC positioning were applied to four clinical treatments (two prostate, two head and neck cases) in order to establish the detection sensitivity of the three devices. Measurements were compared with TPS computed doses via gamma analysis (3%/3 mm and 2%/2 mm) with an agreement of at least 95% and 90% respectively in all pixels. Effect of the errors on the dose distributions was analyzed.ResultsRepeatability and reproducibility were excellent for the three devices. The average pass rate for the 59 cases was superior to 98% for all devices with 3%/3 mm criteria. It was found that for the plans delivered with errors, the sensitivity was quite similar for all devices. Devices were able to detect a 2 mm opened or closed MLC error with 3%/3 mm tolerance level. An error of 3° in collimator, gantry or couch rotation was detected by the three devices using 2%/2 mm criteria.ConclusionsAll three devices have the potential to detect errors with more or less the same threshold. Nevertheless, there is no guarantee that pretreatment QA will catch delivery errors.  相似文献   

6.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

7.
Introduction and purposeDosimetry Check (DC) (Math Resolutions) is a commercial EPID-based dosimetry software, which allows performing pre-treatment and transit dosimetry. DC provides an independent verification of the treatment, being potentially of great interest due to the high benefits of the in vivo volumetric dosimetry, which guarantee the treatment delivery and anatomy constancy. The aim of this work is to study the differences in dose between DC and the Treatment Planning System (TPS) to establish an accuracy level of the system.Material and methodsDC v.3.8 was used along with Varian Clinac iX accelerator equipped with EPID aS1000 and Eclipse v.10.0 with AAA and Acuros XB calculation algorithms. The DC evaluated version is based on a pencil beam calculation algorithm. Various plans were generated over several homogeneous and heterogeneous phantoms. Isocentre point doses and gamma analysis were evaluated.ResultsTotal dose differences at the isocentre between DC and TPS for the studied plans are less than 2%, but single field contributions achieve greater values. In the presence of heterogeneities, the discrepancies can reach up to 15%. In transit mode, DC does not consider properly the couch attenuation, especially when there is an air gap between phantom and couch.ConclusionsThe possibility of this in vivo evaluation and the potentiality of this new system have a very positive impact on improving patient QA. But improvements are required in both calculation algorithm and integration with the record and verify system.  相似文献   

8.
PurposeElectronic portal imaging detector (EPID)-based patient positioning verification is an important component of safe radiotherapy treatment delivery. In computer simulation studies, learning-based approaches have proven to be superior to conventional gamma analysis in the detection of positioning errors. To approximate a clinical scenario, the detectability of positioning errors via EPID measurements was assessed using radiomics analysis for patients with thyroid-associated ophthalmopathy.MethodsTreatment plans of 40 patients with thyroid-associated ophthalmopathy were delivered to a solid anthropomorphic head phantom. To simulate positioning errors, combinations of 0-, 2-, and 4-mm translation errors in the left–right (LR), superior-inferior (SI), and anterior-posterior (AP) directions were introduced to the phantom. The positioning errors-induced dose differences between measured portal dose images were used to predict the magnitude and direction of positioning errors. The detectability of positioning errors was assessed via radiomics analysis of the dose differences. Three classification models—support vector machine (SVM), k-nearest neighbors (KNN), and XGBoost—were used for the detection of positioning errors (positioning errors larger or smaller than 3 mm in an arbitrary direction) and direction classification (positioning errors larger or smaller than 3 mm in a specific direction). The receiver operating characteristic curve and the area under the ROC curve (AUC) were used to evaluate the performance of classification models.ResultsFor the detection of positioning errors, the AUC values of SVM, KNN, and XGBoost models were all above 0.90. For LR, SI, and AP direction classification, the highest AUC values were 0.76, 0.91, and 0.80, respectively.ConclusionsCombined radiomics and machine learning approaches are capable of detecting the magnitude and direction of positioning errors from EPID measurements. This study is a further step toward machine learning-based positioning error detection during treatment delivery with EPID measurements.  相似文献   

9.
AimTo study of 2 Dimensional ion chamber array for angular response and its utility for quality assurance of dynamic multileaf collimator and pretreatment intensity modulated radiotherapy plans.Materials and MethodsThe MLC QA test patterns and IMRT plans were executed on 2D ion chamber array having 1020 vented pixel ionization chambers. The dynamic MLC QA test patterns were chair test, x–wedge, pyramid, open swipe field, garden fence and picket fence. Performance of Dynamic wedges was compared with physical wedges. For IMRT verification, five patients with localized prostate carcinoma were planned using dynamic IMRT technique. Angular response of MatriXX was measured by exposing the system from different gantry angles.ResultsDynamic MLC QA tests such as chair, x-wedge, pyramid, and open swipe field were successfully verified. MatriXX was not able to recognize the bar pattern of picket test and garden fence test. The response of MatriXX gradually decreases from 0° to 180° angles and it was 7.7% less at 180° angle. The dynamic wedge profiles were matching with corresponding physical wedge profiles. For pretreatment IMRT QA, the average dose difference between planned and measured dose was 1.26% with standard deviation of 1.06.ConclusionI'mRT MatriXX can be used for routine dynamic MLC and IMRT pretreatment QA but care should be taken while taking measurements in penumbra region because of its limited spatial resolution.  相似文献   

10.
PurposeWe developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker.MethodsThe recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations.ResultsThe root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker.ConclusionsSufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.  相似文献   

11.

Aim

The aim of this study was to investigate the sensitivity of the trajectory log file based quality assurance to detect potential errors such as MLC positioning and gantry positioning by comparing it with EPID measurement using the most commonly used criteria of 3%/3?mm.

Materials and methods

An in-house program was used to modified plans using information from log files, which can then be used to recalculate a new dose distribution. The recalculated dose volume histograms (DVH) were compared with the originals to assess differences in target and critical organ dose. The dose according to the differences in DVH was also compared with dosimetry from an electronic portal imaging device.

Results

In all organs at risk (OARs) and planning target volumes (PTVs), there was a strong positive linear relationship between MLC positioning and dose error, in both IMRT and VMAT plans. However, gantry positioning errors exhibited little impact in VMAT delivery. For the ten clinical cases, no significant correlations were found between gamma passing rates under the criteria of 3%/3?mm for the composite dose and the mean dose error in DVH (r?<?0.3, P?>?0.05); however, a significant positive correlation was found between the gamma passing rate of 3%/3?mm (%) averaged over all fields and the mean dose error in the DVH of the VMAT plans (r?=?0.59, P?<?0.001).

Conclusions

This study has successfully shown the sensitivity of the trajectory log file to detect the impact of systematic MLC errors and random errors in dose delivery and analyzed the correlation of gamma passing rates with DVH.  相似文献   

12.
PurposePhotographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC).MethodsWe evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis.ResultsThe effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ±1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2 mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual).ConclusionThe present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA.  相似文献   

13.
The persistent use of MLCs through VMAT and IMRT is causing additional wear and tear on these mechanical parts, leading to an increase in MLC interlocks, breakdowns and failures. This study investigates the effect of an MLC clean and service procedure on MLC performance and positional accuracy demonstrated through in-house service logbook reports, Varian MLC backlash test results, daily MLC position QC results and Varian TrueBeam trajectory log file data.A service and clean of each individual MLC leaf was carried out on 3 standard MLC and 2 high definition MLC (HDMLC) Varian TrueBeam linacs. In-house service logbook reports, Varian backlash test results, daily MLC picket fence QC results and beam hold data from patient delivery trajectory log files were analysed for up to 6 months pre and 2 years post the MLC service/clean to assess the impact on unplanned MLC maintenance work and MLC performance.The median (range) of hardware faults reduced from 12 (1–17) pre clean to 0 (0–1) and 4 (1–11) at 12 and 24 months respectively for all linacs with the exception of a HDMLC linac where faults increased from 4 pre-clean to 13 and 20 again at 12 and 24 months respectively. The reduction in faults in the alternative 4 linacs was consistent with the reduction in the number of MLCs reaching the 0.3 mm and the 0.4 mm backlash recommendations in the first 12 and 24 months following the service/clean. The increase in faults in the HDMLC linac was also consistent with the increase in MLCs reaching the 0.3 mm backlash recommendation in the first 12 and 24 months. The median (range) of MLCs reaching a daily picket fence QC position tolerance of 0.25 mm reduced from 14 (1–40) pre clean to 0 (0) at both 12 and 24 months post-clean. This demonstrates the improvement in MLC performance caused by the MLC service/clean but also reveals factors other than MLC position accuracy influence hardware faults. Additionally, the number of beam hold-offs determined from patient delivery trajectory log files were found to have no correlation with the MLC service/clean.The MLC service/clean improves MLC performance and MLC position accuracy, reducing reactive repair work for engineering and physics staff. The results were maintained for 1 year post the MLC service/clean, with a trend back towards pre-clean levels in the subsequent 12–24 months. This suggests this preventative maintenance work could be performed at a frequency of > 2 years. This period of reduced faults and improved performance is significant given the 10 year expected lifespan of a linac.  相似文献   

14.
AimTo present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement.BackgroundDynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction.Materials and methodsFour different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used.ResultsIn the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed.ConclusionDeveloped dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution.  相似文献   

15.
IntroductionThis paper evaluates the role of an acquisition parameter, the frame cycle time “FCT”, in the performance of an aS500-II EPID.Materials and methodsThe work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the “frame cycle time” on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15 MV X-ray beams and dose rates of 1–6 Gy/min on 2100 C/D Linacs.ResultsIn the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time “FCT” influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55 ms (speed of acquisition Vf/s > 18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53 MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode.ConclusionThe choice of the acquisition parameter is essential for the accurate portal dose imaging.  相似文献   

16.
ObjectiveThis work investigates the time and frequency to observe fiducial markers in MLC-modulated fields during intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) beam delivery for real-time prostate localization.MethodsThirty seven prostate patients treated with IMRT or VMAT were included in this retrospective study. DRR images were generated for all MLC segments/control points using the TPS. The MLC leaf pattern of each control point was overlaid on the DRR, and the number of fiducials within the MLC opening was analyzed. EPID images of fiducials in a pelvic phantom were obtained to demonstrate the fiducial visibility during modulated beam delivery.ResultsGold fiducials were visible on EPID images. The probability of seeing a number of fiducials within the MLC opening was analyzed. At least one fiducial was visible during 42 ± 2% and 52 ± 2% beam-on time for IMRT of the prostate with and without lymph nodes, and during 81 ± 4% and 80 ± 5% beam-on time for VMAT of the prostate with and without lymph nodes, respectively. The mean time interval to observe at least one fiducial was 8.4 ± 0.7 and 5.9 ± 0.5 s for IMRT of the prostate with and without the lymph nodes, respectively, and 1.6 ± 0.1 s for VMAT prostate patients. The estimated potential dosimetric uncertainty was 7% and 2% for IMRT and VMAT, respectively.ConclusionsOur results demonstrated that the time and frequency to observe fiducial markers in MLC-modulated fields during IMRT/VMAT beam delivery were adequate for real-time prostate localization. The beam’s eye view fiducial positions could be used for intrafractional target monitoring and motion correction in prostate radiotherapy.  相似文献   

17.

Aim

The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed.

Background

Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study.

Materials and methods

Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8

Results

All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7

Conclusion

Results confirmed that the linear accelerator is capable of performing accurate VMAT.  相似文献   

18.
PurposeTo evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions.Materials and methodsThe IQM’s ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1–5°) and in MLC-defined field size and field shift (1–5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated.ResultsThe IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets.Conclusion The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.  相似文献   

19.
PurposeTriple channel algorithm and specific procedures make more reliable radiochromic dosimetry for treatment planning verification and quality assurance in radiation therapy. A tool to obtain radiochromic dose distributions and compare them with the ones resulting from a treatment planning system was developed and applied.MethodsThe tool was developed as Microsoft Excel macro; it builds dose calibration curves against net optical density of Gafchromic EBT3 film, produces axial, coronal and sagittal dose maps and allows to evaluate them against dose distributions calculated by the Varian treatment planning system Eclipse using gamma index and gamma angle.ResultsThe net optical density standard errors of estimate of calibration curves at 6 MV Varian DBX600 linac energy were 0.2%, 0.4% and 0.2% for the red, green and blue channels. Tests of these curves by means of three independent eight dose points measurement series, at 15 MV and 6 MV Varian 2100C linac and at 6 MV DBX600 linac energies, showed less than 2% of dose errors for the red channel and less than 3% for the green channel in the range 100–450 cGy. The comparisons between dose distributions from Gafchromic EBT3 triple channel algorithm and the ones from Eclipse analytic anisotropic algorithm (AAA) showed values of gamma index 95th percentile between 0.6 and 1.0.ConclusionThe obtained results encourage the application of this tool in radiation therapy quality assurance.  相似文献   

20.
PurposeQuality assurance (QA) is one of the most important issues that should be addressed for intraoperative electron radiotherapy (IOERT), which is not benefiting from image-based treatment planning system. The aim of this study is to evaluate the dosimetric characteristics of Gafchromic EBT2 film for breast IOERT QA procedure.MethodsDue to the fact that some dedicated accelerators are being used for IOERT, dependence of the film response to energy, field size, dose rate and incidence angle of electron beam from the LIAC IOERT accelerator was studied. Then, film response curve to breast IOERT doses was obtained and its accuracy was evaluated and justified through comparison to the results of ionometric dosimetry.ResultsThe results of this study indicated that there are no significant differences between the film responses at different energies of 6, 8, 10 and 12 MeV (P-value = 0.99). Similarly, no field size dependency was found when evaluating the response of the film to different field sizes ranging from 4 to 10 cm (P-value = 0.94). Film response was found to be independent of the dose rate of intraoperative electron beam (P-value = 0.12). Film response variations with changing the beam incidence angle were not significant (P-value > 0.8). Calibration curve at the dose range of 8–24 Gy had an acceptable accuracy. The difference between the results of film dosimetry and ionometric dosimetry was around 5% which was in agreement with the results of dose uncertainty estimation.ConclusionThe EBT2 film was found to be a potentially appropriate tool for breast IOERT verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号