首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.  相似文献   

2.
3.
4.
5.
Gene and SNP annotation are among the first and most important steps in analyzing a genome. As the number of sequenced genomes continues to grow, a key question is: how does the quality of the assembled sequence affect the annotations? We compared the gene and SNP annotations for two different Bos taurus genome assemblies built from the same data but with significant improvements in the later assembly. The same annotation software was used for annotating both sequences. While some annotation differences are expected even between high-quality assemblies such as these, we found that a staggering 40% of the genes (>9,500) varied significantly between assemblies, due in part to the availability of new gene evidence but primarily to genome mis-assembly events and local sequence variations. For instance, although the later assembly is generally superior, 660 protein coding genes in the earlier assembly are entirely missing from the later genome''s annotation, and approximately 3,600 (15%) of the genes have complex structural differences between the two assemblies. In addition, 12–20% of the predicted proteins in both assemblies have relatively large sequence differences when compared to their RefSeq models, and 6–15% of bovine dbSNP records are unrecoverable in the two assemblies. Our findings highlight the consequences of genome assembly quality on gene and SNP annotation and argue for continued improvements in any draft genome sequence. We also found that tracking a gene between different assemblies of the same genome is surprisingly difficult, due to the numerous changes, both small and large, that occur in some genes. As a side benefit, our analyses helped us identify many specific loci for improvement in the Bos taurus genome assembly.  相似文献   

6.
With the aim of understanding relationship between genetic and phenotypic variations in cultivated tomato, single nucleotide polymorphism (SNP) markers covering the whole genome of cultivated tomato were developed and genome-wide association studies (GWAS) were performed. The whole genomes of six tomato lines were sequenced with the ABI-5500xl SOLiD sequencer. Sequence reads covering ∼13.7× of the genome for each line were obtained, and mapped onto tomato reference genomes (SL2.40) to detect ∼1.5 million SNP candidates. Of the identified SNPs, 1.5% were considered to confer gene functions. In the subsequent Illumina GoldenGate assay for 1536 SNPs, 1293 SNPs were successfully genotyped, and 1248 showed polymorphisms among 663 tomato accessions. The whole-genome linkage disequilibrium (LD) analysis detected highly biased LD decays between euchromatic (58 kb) and heterochromatic regions (13.8 Mb). Subsequent GWAS identified SNPs that were significantly associated with agronomical traits, with SNP loci located near genes that were previously reported as candidates for these traits. This study demonstrates that attractive loci can be identified by performing GWAS with a large number of SNPs obtained from re-sequencing analysis.  相似文献   

7.
Association mapping currently relies on the identification of genetic markers. Several technologies have been adopted for genetic marker analysis, with single nucleotide polymorphisms (SNPs) being the most popular where a reasonable quantity of genome sequence data are available. We describe several tools we have developed for the discovery, annotation, and visualization of molecular markers for association mapping. These include autoSNPdb for SNP discovery from assembled sequence data; TAGdb for the identification of gene specific paired read Illumina GAII data; CMap3D for the comparison of mapped genetic and physical markers; and BAC and Gene Annotator for the online annotation of genes and genomic sequences.  相似文献   

8.
SUMMARY: Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations in closely related microbial species, strains or isolates. Some SNPs confer selective advantages for microbial pathogens during infection and many others are powerful genetic markers for distinguishing closely related strains or isolates that could not be distinguished otherwise. To facilitate SNP discovery in microbial genomes, we have developed a web-based application, SNPsFinder, for genome-wide identification of SNPs. SNPsFinder takes multiple genome sequences as input to identify SNPs within homologous regions. It can also take contig sequences and sequence quality scores from ongoing sequencing projects for SNP prediction. SNPsFinder will use genome sequence annotation if available and map the predicted SNP regions to known genes or regions to assist further evaluation of the predicted SNPs for their functional significance. SNPsFinder can generate PCR primers for all predicted SNP regions according to user's input parameters to facilitate experimental validation. The results from SNPsFinder analysis are accessible through the World Wide Web. AVAILABILITY: The SNPsFinder program is available at http://snpsfinder.lanl.gov/. SUPPLEMENTARY INFORMATION: The user's manual is available at http://snpsfinder.lanl.gov/UsersManual/  相似文献   

9.

Background

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.

Results

A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.

Conclusions

Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.  相似文献   

10.
11.
Whole genome sequencing studies are essential to obtain a comprehensive understanding of the vast pattern of human genomic variations. Here we report the results of a high-coverage whole genome sequencing study for 44 unrelated healthy Caucasian adults, each sequenced to over 50-fold coverage (averaging 65.8×). We identified approximately 11 million single nucleotide polymorphisms (SNPs), 2.8 million short insertions and deletions, and over 500,000 block substitutions. We showed that, although previous studies, including the 1000 Genomes Project Phase 1 study, have catalogued the vast majority of common SNPs, many of the low-frequency and rare variants remain undiscovered. For instance, approximately 1.4 million SNPs and 1.3 million short indels that we found were novel to both the dbSNP and the 1000 Genomes Project Phase 1 data sets, and the majority of which (∼96%) have a minor allele frequency less than 5%. On average, each individual genome carried ∼3.3 million SNPs and ∼492,000 indels/block substitutions, including approximately 179 variants that were predicted to cause loss of function of the gene products. Moreover, each individual genome carried an average of 44 such loss-of-function variants in a homozygous state, which would completely “knock out” the corresponding genes. Across all the 44 genomes, a total of 182 genes were “knocked-out” in at least one individual genome, among which 46 genes were “knocked out” in over 30% of our samples, suggesting that a number of genes are commonly “knocked-out” in general populations. Gene ontology analysis suggested that these commonly “knocked-out” genes are enriched in biological process related to antigen processing and immune response. Our results contribute towards a comprehensive characterization of human genomic variation, especially for less-common and rare variants, and provide an invaluable resource for future genetic studies of human variation and diseases.  相似文献   

12.
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.  相似文献   

13.
Molecular markers are used to provide the link between genotype and phenotype, for the production of molecular genetic maps and to assess genetic diversity within and between related species. Single nucleotide polymorphisms (SNPs) are the most abundant molecular genetic marker. SNPs can be identified in silico , but care must be taken to ensure that the identified SNPs reflect true genetic variation and are not a result of errors associated with DNA sequencing. The SNP detection method autoSNP has been developed to identify SNPs from sequence data for any species. Confidence in the predicted SNPs is based on sequence redundancy, and haplotype co-segregation scores are calculated for a further independent measure of confidence. We have extended the autoSNP method to produce autoSNPdb, which integrates SNP and gene annotation information with a graphical viewer. We have applied this software to public barley expressed sequences, and the resulting database is available over the Internet. SNPs can be viewed and searched by sequence, functional annotation or predicted synteny with a reference genome, in this case rice. The correlation between SNPs and barley cultivar, expressed tissue type and development stage has been collated for ease of exploration. An average of one SNP per 240 bp was identified, with SNPs more prevalent in the 5' regions and simple sequence repeat (SSR) flanking sequences. Overall, autoSNPdb can provide a wealth of genetic polymorphism information for any species for which sequence data are available.  相似文献   

14.
We searched the genomes of eight rice cultivars (Oryza sativa L. ssp. japonica and ssp. indica) and a wild rice accession (Oryza rufipogon Griffith) for nucleotide polymorphisms, and identified 7805 polymorphic loci, including single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels), in predicted intergenic regions. Polymorphisms are useful as DNA markers for genetic analysis or positional cloning with segregating populations of crosses. Pairwise comparison between cultivars and a neighbor-joining tree calculated from SNPs agreed very well with relationships between rice strains predicted from pedigree data or calculated with other DNA markers such as p-SINE1 and simple sequence repeats (SSRs), suggesting that whole-genome SNP information can be used for analysis of evolutionary relationships. Using multiple SNPs to identify alleles, we drew a map to illustrate the alleles shared among the eight cultivars and the accession. The map revealed that most of the genome is mono- or di-allelic among japonica cultivars, whereas alleles well conserved among modern japonica paddy rice cultivars were often shared with indica cultivars or wild rice, suggesting that the genome structure of modern cultivars is composed of chromosomal segments from various genetic backgrounds. Use of allele-sharing analysis and association analysis were also tested and are discussed.  相似文献   

15.

Background

There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C).

Methodology/Principal Findings

A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).

Conclusions/Significance

This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.  相似文献   

16.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.  相似文献   

17.
DNA polymorphisms are powerful tools for many evolutionary and genomic studies in plants including molecular breeding. Single nucleotide polymorphisms (SNPs) are the most elemental DNA marker for genomic studies, but even with advances in DNA sequencing technology, SNP discovery remains costly and computationally demanding, especially in large genomes that are rich in repetitive DNA such as those of many plants. Here we report a method using DNA renaturation kinetics (Cot techniques), sequencing, and BLAST-based screening to identify low-copy, non-coding DNA sequences that were subsequently found to be relatively rich in polymorphisms. A total of of 63 such fragments isolated from a diploid D genome cotton species (Gossypium raimondii) revealed a higher frequency of polymorphisms than that observed for cotton expressed sequence tags or hypomethylated (PstI-susceptible) genomic DNA. While microsatellite-derived loci show still higher polymorphism rates, they often fall in repetitive elements and their sequence analysis is often complicated by alignment difficulties. The potential applications of Cot-filtered noncoding (CFNC) DNA in development of DNA markers are discussed.  相似文献   

18.
19.
The objective was to determine if single nucleotide polymorphisms (SNPs) in porcine MX2 gene affect its antiviral potential. MX proteins are known to suppress the multiplication of several viruses, including influenza virus and vesicular stomatitis virus (VSV). In domestic animals possessing highly polymorphic genome, our previous research indicated that a specific SNP in chicken Mx gene was responsible for its antiviral function. However, there still has been no information about SNPs in porcine MX2 gene. In this study, we first conducted polymorphism analysis in 17 pigs of MX2 gene derived from seven breeds. Consequently, a total of 30 SNPs, of which 11 were deduced to cause amino acid variations, were detected, suggesting that the porcine MX2 is very polymorphic. Next, we classified MX2 into eight alleles (A1–A8) and subsequently carried out infectious experiments with recombinant VSVΔG*-G to each allele. In A1–A5 and A8, position 514 amino acid (514 aa) of MX2 was glycine (Gly), which did not inhibit VSV multiplication, whereas in A6 and A7, 514 aa was arginine (Arg), which exhibited the antiviral ability against VSV. These results demonstrate that a SNP at 514 aa (Gly-Arg) of porcine MX2 plays a pivotal role in the antiviral activity as well as that at 631 aa of chicken Mx.  相似文献   

20.
In the absence of a reference genome, single-nucleotide polymorphisms (SNP) discovery in a group of abalone species was undertaken by random sequence assembly. A web-based interface was constructed, and 11 932 DNA sequences from the genus Haliotis were assembled, with 1321 contigs built. Of these, 118 contigs that consisted of at least ten annotation groups were selected. The 1577 putative SNPs were identified from the 118 contigs, with SNPs in several HSP70 gene contigs confirmed by PCR amplification of an 809-bp DNA fragment. SNPs in the HSP70 gene were compared across eight abalone species. A total of 129 polymorphic sites, including heterozygote sites within and among species, were observed. Phylogenetic analysis of the partial HSP70 gene region showed separation of the tested abalone into two groups, one reflecting the southern hemisphere species and the other the northern hemisphere species. Interestingly, Haliotis iris from New Zealand showed a closer relationship to species distributed in the northern Pacific region. Although HSP genes are known to be highly conserved among taxa, the validation of polymorphic SNPs from HSP70 in this mollusc demonstrates the applicability of cross-species SNP markers in abalone and the first step towards universal nuclear markers in Haliotis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号