首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.  相似文献   

3.
4.

Background

Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown.

Methodology/Principal Findings

Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice.

Conclusions/Significance

Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction.  相似文献   

5.
6.

Background

Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.

Objective

To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.

Methods

Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.

Results

In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development.

Conclusions

Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.  相似文献   

7.

Background

MicroRNAs (miRNAs) are small, noncoding RNAs (ribonucleic acids) that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer.

Methodology/Principal Findings

The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls.

Conclusions/Significance

Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.  相似文献   

8.

Background

The N-methyl-D-aspartate (NMDA) receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH). Serine racemase (SRR) is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO) mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice.

Methodology/Principal Findings

Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP) were performed. The role of SRR on the release of dopamine (DA) in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg) was comparable between wild-type (WT) and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days) resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment) did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg)-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg) significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice.

Conclusions/Significance

These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1/2 by METH may contribute to the development of this sensitization as seen in WT but not Srr-KO mice.  相似文献   

9.

Background

No animal models of autism spectrum disorders (ASD) with good construct validity are currently available; using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known genetic disorder presenting ASD symptoms. The Fmr1-KO is available on different genetic backgrounds (FVB versus C57BL/6), which may explain some of the conflicting results that have been obtained with these mutants up till now.

Methods

Fmr1 KO and their wild-type littermates on both the FVB and C57BL/6 genetic backgrounds were examined on a battery of tests modeling the clinical symptoms of ASD, including the triad of core symptoms (alterations in social interaction and communication, presence of repetitive behaviors), as well as the secondary symptoms (disturbances in sensori-motor reactivity and in circadian patterns of activity, epileptic events).

Results

Fmr1-KO mice displayed autistic-like core symptoms of altered social interaction and occurrence of repetitive behaviors with additional hyperactivity. The genetic background modulated the effects of the Fmr1 deletion and it appears that the C57BL/6 background may be more suitable for further research on core autistic-like symptoms.

Conclusions

The Fmr1-mouse line does not recapitulate all of the main core and secondary ASD symptoms, but still can be useful to elucidate the neurobiological mechanisms underlying specific ASD-like endophenotypes.  相似文献   

10.

Background

Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.

Methods

We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL), oral squamous cell carcinoma (OSCC) and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO) mice.

Results

We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.

Conclusion

The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.  相似文献   

11.

Introduction

Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-α (TNFα), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1β). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-κB (NF-κB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation.

Aim

To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation.

Methods

Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFα, MCP1, IL-1β mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-κB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation.

Results

Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFα, MCP1 protein and TNFα, MCP1, pro-IL-1β and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-κB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1β levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-κB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155.

Conclusion

Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFα and MCP1 expression but not caspase-dependent IL-1β increase in neuroinflammation.  相似文献   

12.

Background

The formation of discrete elastin bands at the tips of secondary alveolar septa is important for normal alveolar development, but the mechanisms regulating the lung elastogenic program are incompletely understood. JNK suppress elastin synthesis in the aorta and is important in a host of developmental processes. We sought to determine whether JNK suppresses pulmonary fibroblast elastogenesis during lung development.

Methods

Alveolar size, elastin content, and mRNA of elastin-associated genes were quantitated in wild type and JNK-deficient mouse lungs, and expression profiles were validated in primary lung fibroblasts. Tropoelastin protein was quantitated by Western blot. Changes in lung JNK activity throughout development were quantitated, and pJNK was localized by confocal imaging and lineage tracing.

Results

By morphometry, alveolar diameters were increased by 7% and lung elastin content increased 2-fold in JNK-deficient mouse lungs compared to wild type. By Western blot, tropoelastin protein was increased 5-fold in JNK-deficient lungs. Postnatal day 14 (PND14) lung JNK activity was 11-fold higher and pJNK:JNK ratio 6-fold higher compared to PN 8 week lung. Lung tropoelastin, emilin-1, fibrillin-1, fibulin-5, and lysyl oxidase mRNAs inversely correlated with lung JNK activity during alveolar development. Phosphorylated JNK localized to pulmonary lipofibroblasts. PND14 JNK-deficient mouse lungs contained 7-fold more tropoelastin, 2,000-fold more emilin-1, 800-fold more fibrillin-1, and 60-fold more fibulin-5 than PND14 wild type lungs. Primarily lung fibroblasts from wild type and JNK-deficient mice showed similar differences in elastogenic mRNAs.

Conclusions

JNK suppresses fibroblast elastogenesis during the alveolar stage of lung development.  相似文献   

13.

Background

CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas.

Methods

We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure.

Results

Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation.

Conclusions

In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.  相似文献   

14.

Introduction

Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored.

Objective

Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury.

Methods

3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA.

Results

LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged.

Conclusions

Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.  相似文献   

15.

Background

Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development.

Results

Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent.

Conclusions

Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-726) contains supplementary material, which is available to authorized users.  相似文献   

16.

Rationale

HMG-CoA reductase inhibitors such as rosuvastatin may have immunomodulatory and anti-inflammatory effects that may reduce the severity of influenza A infection. We hypothesized that rosuvastatin would decrease viral replication, attenuate lung injury, and improve mortality following influenza A infection in mice.

Methods

C57Bl/6 mice were treated daily with rosuvastatin (10 mg/kg/day) supplemented in chow (or control chow) beginning three days prior to infection with either A//Udorn/72 [H3N2] or A/WSN/33 [H1N1] influenza A virus (1×105 pfu/mouse). Plaque assays were used to examine the effect of rosuvastatin on viral replication in vitro and in the lungs of infected mice. We measured cell count with differential, protein and cytokines in the bronchoalveolar lavage (BAL) fluid, histologic evidence of lung injury, and wet-to-dry ratio on Day 1, 2, 4, and 6. We also recorded daily weights and mortality.

Results

The administration of rosuvastatin had no effect on viral clearance of influenza A after infection. Weight loss, lung inflammation and lung injury severity were similar in the rosuvastatin and control treated mice. In the mice infected with influenza A (A/WSN/33), mortality was unaffected by treatment with rosuvastatin.

Conclusions

Statins did not alter the replication of influenza A in vitro or enhance its clearance from the lung in vivo. Statins neither attenuated the severity of influenza A-induced lung injury nor had an effect on influenza A-related mortality. Our data suggest that the association between HMG CoA reductase inhibitors and improved outcomes in patients with sepsis and pneumonia are not attributable to their effects on influenza A infection.  相似文献   

17.

Background

Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC.

Methods

Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models.

Results

Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours.

Conclusions

Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.  相似文献   

18.

Background

Since the discovery of the human CFTR gene in 1989 various mouse models for cystic fibrosis (CF) have been generated and used as a very suitable and popular tool to approach research on this life-threatening disease. Age related changes regarding the course of disease and susceptibility towards pulmonary infections have been discussed in numerous studies.

Methods

Here, we investigated CftrTgH(neoim)Hgu and Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J CF mice and their non-CF littermates during an acute lung infection with Pseudomonas aeruginosa for age dependent effects of their lung function and immune response.Mice younger than three or older than six months were intratracheally infected with P. aeruginosa TBCF10839. The infection was monitored by lung function of the animals using non-invasive head-out spirometry and the time course of physiological parameters over 192 hours. Quantitative bacteriology and lung histopathology of a subgroup of animals were used as endpoint parameters.

Results

Age-dependent changes in lung function and characteristic features for CF like a shallower, faster breathing pattern were observed in both CF mouse models in uninfected state. In contrast infected CF mice did not significantly differ from their non-CF littermates in susceptibility and severity of lung infection in both mouse models and age groups. The transgenic Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J and their non-CF littermates showed a milder course of infection than the CftrTgH(neoim)Hgu CF and their congenic C57Bl/6J non-CF mice suggesting that the genetic background was more important for outcome than Cftr dysfunction.

Conclusions

Previous investigations of the same mouse lines have shown a higher airway susceptibility of older CF mice to intranasally applied P. aeruginosa. The different outcome of intranasal and intratracheal instillation of bacteria implies that infected CF epithelium is impaired during the initial colonization of upper airways, but not in the subsequent response of host defense.  相似文献   

19.

Background

Cigarette smoke (CS) is a major risk factor for the development of COPD. CS exposure is associated with an increased risk of bacterial colonization and respiratory tract infection, because of suppressed antibacterial activities of the immune system and delayed clearance of microbial agents from the lungs. Colonization with Staphylococcus aureus results in release of virulent enterotoxins, with superantigen activity which causes T cell activation.

Objective

To study the effect of Staphylococcus aureus enterotoxin B (SEB) on CS-induced inflammation, in a mouse model of COPD.

Methods

C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 4x/day, 5 days/week). Endonasal SEB (10 μg/ml) or saline was concomitantly applied starting from week 3, on alternate days. 24 h after the last CS and SEB exposure, mice were sacrificed and bronchoalveolar lavage (BAL) fluid and lung tissue were collected.

Results

Combined exposure to CS and SEB resulted in a raised number of lymphocytes and neutrophils in BAL, as well as increased numbers of CD8+ T lymphocytes and granulocytes in lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. In addition, combined CS/SEB exposure stimulated the formation of dense, organized aggregates of B- and T- lymphocytes in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 (mRNA) levels in lungs.

Conclusions

Combined CS and SEB exposure aggravates CS-induced inflammation in mice, suggesting that Staphylococcus aureus could influence the pathogenesis of COPD.  相似文献   

20.

Background

Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned Lgl1, a developmentally regulated secreted glycoprotein in the lung. In rat, O2 toxicity caused reduced levels of Lgl1, which normalized during recovery. We report here on the generation of an Lgl1 knockout mouse in order to determine whether deficiency of Lgl1 is associated with arrested alveolarization and contributes to neonatal lung injury.

Methods

An Lgl1 knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the Lgl1 gene. To evaluate the pulmonary phenotype of Lgl1+/- mice, we assessed lung morphology, Lgl1 RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation.

Results

Absence of Lgl1 was lethal prior to lung formation. Postnatal Lgl1+/- lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of TH2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of Lgl1 was associated with elevated tropoelastin expression and altered pulmonary mechanics.

Conclusion

Our findings confirm that Lgl1 is essential for viability and is required for developmental processes that precede lung formation. Lgl1+/- mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. Lgl1 haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号